MEYEROWITZ E M, PRUITT R E. Arabidopsis thaliana and plant molecular genetics[J]. Science, 1985, 229(4719): 1214-1218. DOI:10.1126/science.229.4719.1214
[2]BOWMAN J L, SMYTH D R, MEYEROWITZ E M. Genes directing flower development in Arabidopsis[J]. The Plant Cell, 1989, 1(1): 37-52. DOI:10.1105/tpc.1.1.37
[3]SMYTH D R, BOWMAN J L, MEYEROWITZ E M. Early flower development in Arabidopsis[J]. The Plant Cell, 1990, 2(8): 755-767. DOI:10.1105/tpc.2.8.755
[4] [5]COEN E S, MEYEROWITZ E M. The war of the whorls: Genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37. DOI:10.1038/353031a0
[6]BOWMAN J L, SMYTH D R, MEYEROWITZ E M. The ABC model of flower development: Then and now[J]. Development, 2012, 139(22): 4095-4098. DOI:10.1242/dev.083972
[7]LLOYD A M, BARNASON A, ROGERS S G, et al. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens[J]. Science, 1986, 234(4775): 464-466. DOI:10.1126/science.234.4775.464
[8]CHANG C, BOWMAN J L, DEJOHN A W, et al. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(18): 6856-6860. DOI:10.1073/pnas.85.18.6856
[9]AMBROS P F, MATZKE A J M, MATZKE M A. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization[J]. The EMBO Journal, 1986, 5(9): 2073-2077. DOI:10.1002/embj.1986.5.issue-9
[10]KONCZ C, MARTINI N, MAYERHOFER R, et al. High-frequency T-DNA-mediated gene tagging in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(21): 8467-8471. DOI:10.1073/pnas.86.21.8467
[11] [12]SUNDSTRÖM J F, NAKAYAMA N, GLIMELIUS K, et al. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis[J]. The Plant Journal, 2006, 46(4): 593-600. DOI:10.1111/tpj.2006.46.issue-4
[13]GUSTAFSON-BROWN C, SAVIDGE B, YANOFSKY M F. Regulation of the arabidopsis floral homeotic gene APETALA1[J]. Cell, 1994, 76(1): 131-143. DOI:10.1016/0092-8674(94)90178-3
[14]PELAZ S, DITTA G S, BAUMANN E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405(6783): 200-203. DOI:10.1038/35012103
[15]LOHMANN J U, WEIGEL D. Building beauty: The genetic control of floral patterning[J]. Development Cell, 2002, 2(2): 135-142. DOI:10.1016/S1534-5807(02)00122-3
[16]DINH T T, GIRKE T, LIU X G, et al. The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element[J]. Development, 2012, 139(11): 1978-1986. DOI:10.1242/dev.077073
[17]CHEN X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666): 2022-2025. DOI:10.1126/science.1088060
[18]AUKERMAN M J, SAKAI H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. The Plant Cell, 2003, 15(11): 2730-2741. DOI:10.1105/tpc.016238
[19]MIZUKAMI Y, MA H. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA[J]. Plant Molecular Biology, 1995, 28(5): 767-784. DOI:10.1007/BF00042064
[20]SIEBURTH L E, RUNNING M P, MEYEROWITZ E M. Genetic separation of third and fourth whorl functions of AGAMOUS[J]. The Plant Cell, 1995, 7(8): 1249-1258. DOI:10.1105/tpc.7.8.1249
[21]LOHMANN J U, HONG R L, HOBE M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis[J]. Cell, 2001, 105(6): 793-803. DOI:10.1016/S0092-8674(01)00384-1
[22]ZHAO L, KIM Y, DINH T T, et al. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems[J]. The Plant Journal, 2007, 51(5): 840-849. DOI:10.1111/j.1365-313X.2007.03181.x
[23]CARLES C C, FLETCHER J C. Shoot apical meristem maintenance: The art of a dynamic balance[J]. Trends in Plant Science, 2003, 8(8): 394-401. DOI:10.1016/S1360-1385(03)00164-X
[24] [25]RODRIGUEZ K, PERALES M, SNIPES S, et al. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning[J]. Proceedings of the National Academy Sciences of the United States of America, 2016, 113(41): E6307-E6315. DOI:10.1073/pnas.1607673113
[26]MAYER K F X, SCHOOF H, HAECKER A, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1998, 95(6): 805-815. DOI:10.1016/S0092-8674(00)81703-1
[27]FLETCHER J C, BRAND U, RUNNING M P, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems[J]. Science, 1999, 283(5409): 1911-1914. DOI:10.1126/science.283.5409.1911
[28]DAUM G, MEDZIHRADSZKY A, SUZAKI T, et al. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14619-14624. DOI:10.1073/pnas.1406446111
[29]LAUX T, MAYER K F, BERGER J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996, 122(1): 87-96.
[30]GALLOIS J L, NORA F R, MIZUKAMI Y, et al. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes & Development, 2004, 18(4): 375-380.
[31]XU Y Y, WANG X M, LI J, et al. Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana[J]. Plant Molecular Biology, 2005, 57(6): 773-784. DOI:10.1007/s11103-005-0952-9
[32]BRAND U, FLETCHER J C, HOBE M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479): 617-619. DOI:10.1126/science.289.5479.617
[33]LENHARD M, LAUX T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1[J]. Development, 2003, 130(14): 3163-3173.
[34]PERALES M, RODRIGUEZK K, SNIPES S, et al. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis[J]. Proceedings of National Academy Sciences of the United States of America, 2016, 113(41): E6298-E6306. DOI:10.1073/pnas.1607669113
[35]SNIPES S A, RODRIGUEZ K, DEVRIES A E, et al. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription[J]. PLoS Genetics, 2018, 14(4): e1007351. DOI:10.1371/journal.pgen.1007351
[36]LENHARD M, BOHNERT A, JÜRGENS G, et al. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS[J]. Cell, 2001, 105(6): 805-814. DOI:10.1016/S0092-8674(01)00390-7
[37] [38]SUN B, ITO T. Floral stem cells: From dynamic balance towards termination[J]. Biochemical Society Transactions, 2010, 38(2): 613-616. DOI:10.1042/BST0380613
[39]LIU X G, KIM Y J, MÜLLER R, et al. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins[J]. The Plant Cell, 2011, 23(10): 3654-3670. DOI:10.1105/tpc.111.091538
[40]ITO T, NG K H, LIM T S, et al. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis[J]. The Plant Cell, 2007, 19(11): 3516-3529. DOI:10.1105/tpc.107.055467
[41]LIU X G, GAO L, DINH T T, et al. DNA topoisomerase Ⅰ affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis[J]. The Plant Cell, 2014, 26(7): 2803-2817. DOI:10.1105/tpc.114.124941
[42]GUO L, CAO X W, LIU Y H, et al. A chromatin loop represses WUSCHEL expression in Arabidopsis[J]. The Plant Journal, 2018, 94(6): 1083-1097. DOI:10.1111/tpj.2018.94.issue-6
[43]MIZUKAMI Y, MA H. Determination of Arabidopsis floral meristem identity by AGAMOUS[J]. The Plant Cell, 1997, 9(3): 393-408. DOI:10.1105/tpc.9.3.393
[44]PAYNE T, JOHNSON S D, KOLTUNOW A M. KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium[J]. Development, 2004, 131(15): 3737-3749. DOI:10.1242/dev.01216
[45] [46]CARLES C C, CHOFFNES-INADA D, REVILLE K, et al. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis[J]. Development, 2005, 132(5): 897-911. DOI:10.1242/dev.01642
[47] [48]DAS P, ITO T, WELLMER F, et al. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA[J]. Development, 2009, 136(10): 1605-1611. DOI:10.1242/dev.035436
[49]MAIER A T, STEHLING-SUN S, WOLLMANN H, et al. Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression[J]. Development, 2009, 136(10): 1613-1620. DOI:10.1242/dev.033647
[50]LI J J, JIA D X, CHEN X M. HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein[J]. The Plant Cell, 2001, 13(10): 2269-2281. DOI:10.1105/tpc.13.10.2269
[51]CHEN X M, MEYEROWITZ E M. HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway[J]. Molecular Cell, 1999, 3(3): 349-360. DOI:10.1016/S1097-2765(00)80462-1
[52]PARK W, LI J J, SONG R T, et al. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Biology, 2002, 12(17): 1484-1495. DOI:10.1016/S0960-9822(02)01017-5
[53]AMBROS V. MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing[J]. Cell, 2003, 113(6): 673-676. DOI:10.1016/S0092-8674(03)00428-8
[54]CHEN X M, LIU J, CHENG Y L, et al. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower[J]. Development, 2002, 129(5): 1085-1094.
[55]CHENG Y L, KATO N, WANG W M, et al. Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana[J]. Development Cell, 2003, 4(1): 53-66. DOI:10.1016/S1534-5807(02)00399-4
[56]BOWMAN J L, SMYTH D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains[J]. Development, 1999, 126(11): 2387-2396.
[57]YAMAGUCHI N, HUANG J B, XU Y F, et al. Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation[J]. Nature Communications, 2017, 8(1): 1125. DOI:10.1038/s41467-017-01252-6
[58]GÓMEZ-MENA C, DE FOLTER S, COSTA M M R, et al. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis[J]. Development, 2005, 132(3): 429-438. DOI:10.1242/dev.01600
[59]Lee J Y, BAUM S F, ALVAREZ J, et al. Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis[J]. The Plant Cell, 2005, 17(1): 25-36. DOI:10.1105/tpc.104.026666
[60]WÜRSCHUM T, GROß-HARDT R, LAUX T. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem[J]. The Plant Cell, 2006, 18(2): 295-307. DOI:10.1105/tpc.105.038398
[61]LIU X, DINH T T, LI D M, et al. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy[J]. The Plant Journal, 2014, 80(4): 629-641. DOI:10.1111/tpj.12658
[62] [63]SAKAI H, MEDRANO L J, MEYEROWITZ E M. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries[J]. Nature, 1995, 378(6553): 199-203. DOI:10.1038/378199a0
[64]PRUNET N, YANG W B, DAS P, et al. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 7166-7171. DOI:10.1073/pnas.1705977114
[65]XU Y F, PRUNET N, GAN E S, et al. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis[J]. The EMBO Journal, 2018, 37(11): e97499. DOI:10.15252/embj.201797499
[66]PRUNET N, MOREL P, THIERRY A, et al. REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana[J]. The Plant Cell, 2008, 20(4): 901-919. DOI:10.1105/tpc.107.053306
[67]LI D M, FU X, GUO L, et al. FAR-RED ELONGATED HYPOCOTYL3 activates SEPALLATA2 but inhibits CLAVATA3 to regulate meristem determinacy and maintenance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(33): 9375-9380. DOI:10.1073/pnas.1602960113
[68]HUGOUVIEUX V, SILVA C S, JOURDAIN A, et al. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis[J]. Nucleic Acids Research, 2018, 46(10): 4966-4977. DOI:10.1093/nar/gky205
[69] [70]LIN R C, DING L, CASOLA C, et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis[J]. Science, 2007, 318(5854): 1302-1305. DOI:10.1126/science.1146281
[71]OUYANG X H, LI J G, LI B S, et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development[J]. The Plant Cell, 2011, 23(7): 2514-2535. DOI:10.1105/tpc.111.085126
[72]CONN V M, HUGOUVIEUX V, NAYAK A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Natrual Plants, 2017, 3: 17053. DOI:10.1038/nplants.2017.53
[73]YU H, ITO T, ZHAO Y X, et al. Floral homeotic genes are targets of gibberellin signaling in flower development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20): 7827-7832. DOI:10.1073/pnas.0402377101
[74]MURRAY J A H, JONES A, GODIN C, et al. Systems analysis of shoot apical meristem growth and development: Integrating hormonal and mechanical signaling[J]. The Plant Cell, 2012, 24(10): 3907-3919. DOI:10.1105/tpc.112.102194
[75] [76]CHENG Z J, WANG L, SUN W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3[J]. Plant Physiology, 2013, 161(1): 240-251. DOI:10.1104/pp.112.203166
[77]ZHANG K, WANG R Z, ZI H L, et al. AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling[J]. The Plant Cell, 2018, 30(2): 324-346. DOI:10.1105/tpc.17.00705
[78]WERNER S, GROSE R. Regulation of wound healing by growth factors and cytokines[J]. Physiological Reviews, 2003, 83(3): 835-870. DOI:10.1152/physrev.2003.83.3.835
[79]GIULINI A, WANG J, JACKSON D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1[J]. Nature, 2004, 430(7003): 1031-1034. DOI:10.1038/nature02778
[80]HIGUCHI M, PISCHKE M S, MÄHÖNEN A P, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(23): 8821-8826. DOI:10.1073/pnas.0402887101
[81]NISHIMURA C, OHASHI Y, SATO S, et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis[J]. The Plant Cell, 2004, 16(6): 1365-1377. DOI:10.1105/tpc.021477
[82]LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071): 1172-1175. DOI:10.1038/nature04270
[83]GORDON S P, CHICKARMANE V S, OHNO C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16529-16534. DOI:10.1073/pnas.0908122106
[84]PASZKOWSKI J, SCHEID O M. Plant genes: The genetics of epigenetics[J]. Current Biology, 1998, 8(6): R206-R208. DOI:10.1016/S0960-9822(98)70126-5
[85]KIEFER J C. Epigenetics in development[J]. Developmental Dynamics, 2007, 236(4): 1144-1156. DOI:10.1002/(ISSN)1097-0177
[86] [87]HUANG B, JIANG C Z, ZHANG R X. Epigenetics: The language of the cell?[J]. Epigenomics, 2014, 6(1): 73-88. DOI:10.2217/epi.13.72
[88]TOLLERVEY J R, LUNYAK V V. Epigenetics: gudge, jury and executioner of stem cell fate[J]. Epigenetics, 2012, 7(8): 823-840. DOI:10.4161/epi.21141
[89]CAO X W, HE Z S, GUO L, et al. Epigenetic mechanisms are critical for the regulation of WUSCHEL expression in floral meristems[J]. Plant Physiology, 2015, 168(4): 1189-1196. DOI:10.1104/pp.15.00230
[90]NG H H, FENG Q, WANG H B, et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association[J]. Genes & Development, 2002, 16(12): 1518-1527.
[91]ZHANG L W, EUGENI E E, PARTHUN M R, et al. Identification of novel histone post-translational modifications by peptide mass fingerprinting[J]. Chromosoma, 2003, 112(2): 77-86. DOI:10.1007/s00412-003-0244-6
[92]XU F, ZHANG K L, GRUNSTEIN M. Acetylation in histone H3 globular domain regulates gene expression in yeast[J]. Cell, 2005, 121(3): 375-385. DOI:10.1016/j.cell.2005.03.011
[93] [94]GOODRICH J, PUANGSOMLEE P, MARTIN M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis[J]. Nature, 1997, 386(6620): 44-51. DOI:10.1038/386044a0
[95]KINOSHITA T, HARADA J J, GOLDBERG R B, et al. Polycomb repression of flowering during early plant development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 14156-14161. DOI:10.1073/pnas.241507798
[96]SCHUBERT D, PRIMAVESI L, BISHOPP A, et al. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27[J]. The EMBO Journal, 2006, 25(19): 4638-4649. DOI:10.1038/sj.emboj.7601311
[97]SALEH A, AI-ABDALLAT A, NDAMUKONG I, et al. The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish 'bivalent chromatin marks' at the silent AGAMOUS locus[J]. Nucleic Acids Research, 2016, 44(7): 3475-3476. DOI:10.1093/nar/gkv1489
[98]CALONJE M, SANCHEZ R, CHEN L J, et al. EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis[J]. The Plant Cell, 2008, 20(2): 277-291. DOI:10.1105/tpc.106.049957
[99]ALVAREZ-VENEGAS R, PIEN S, SADDER M, et al. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes[J]. Current Biology, 2003, 13(8): 627-637. DOI:10.1016/S0960-9822(03)00243-4
[100]ITO T, SUN B. Epigenetic regulation of developmental timing in floral stem cells[J]. Epigenetics, 2009, 4(8): 564-567. DOI:10.4161/epi.4.8.10351
[101]SHEN W H, XU L. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana[J]. Molecular Plant, 2009, 2(4): 600-609. DOI:10.1093/mp/ssp022
[102]SHAFA M, KRAWETZ R, RANCOURT D E. Returning to the stem state: Epigenetics of recapitulating pre-differentiation chromatin structure[J]. BioeEssays, 2010, 32(9): 791-799. DOI:10.1002/bies.201000033
[103]KWON C S, CHEN C B, WAGNER D. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis[J]. Genes Development, 2005, 19(8): 992-1003. DOI:10.1101/gad.1276305
[104]WAGNER D, MEYEROWITZ E M. SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis[J]. Current Biology, 2002, 12(2): 85-94. DOI:10.1016/S0960-9822(01)00651-0
[105]WU M F, SANG Y, BEZHANI S, et al. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3576-3581. DOI:10.1073/pnas.1113409109
[106]KAYA H, SHIBAHARA K, TAOKA K, et al. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems[J]. Cell, 2001, 104(1): 131-142. DOI:10.1016/S0092-8674(01)00197-0
[107]KIEBER J J, TISSIER A F, SIGNER E R. Cloning and characterization of an Arabidopsis thaliana topoisomerase Ⅰ gene[J]. Plant Physiology, 1992, 99(4): 1493-1501. DOI:10.1104/pp.99.4.1493
[108]GRAF P, DOLZBLASZ A, WÜRSCHUM T, et al. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing[J]. The Plant Cell, 2010, 22(3): 716-728. DOI:10.1105/tpc.109.068296
[109]ZHANG Y C, CHEN Y Q. Long noncoding RNAs: New regulators in plant development[J]. Biochemical and Biophysical Research Communications, 2013, 436(2): 111-114. DOI:10.1016/j.bbrc.2013.05.086
[110]JOFUKU K D, DEN BOER B G, VAN MONTAGU M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 6(9): 1211-1225. DOI:10.1105/tpc.6.9.1211
[111]YUMUL R E, KIM Y J, LIU X G, et al. POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network[J]. PLoS Genetics, 2013, 9(1): e1003218. DOI:10.1371/journal.pgen.1003218
[112] [113]ZHENG X W, ZHU J H, KAPOOR A, et al. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing[J]. The EMBO Journal, 2007, 26(6): 1691-1701. DOI:10.1038/sj.emboj.7601603
[114]MONTGOMERY T A, HOWELL M D, CUPERUS J T, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation[J]. Cell, 2008, 133(1): 128-141. DOI:10.1016/j.cell.2008.02.033
[115]HAVECKER E R, WALLBRIDGE L M, HARDCASTLE T J, et al. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci[J]. The Plant Cell, 2010, 22(2): 321-334. DOI:10.1105/tpc.109.072199
[116]JI L J, LIU X G, WANG W M, et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis[J]. PLoS Genetics, 2011, 7(3): e1001358. DOI:10.1371/journal.pgen.1001358
[117]LYNN K, FERNANDEZ A, AIDA M, et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene[J]. Development, 1999, 126(3): 469-481.
[118]EHRLICH M, GAMA-SOSA M A, HUANG L H, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells[J]. Nucleic Acids Research, 1982, 10(8): 2709-27021. DOI:10.1093/nar/10.8.2709
[119]CAO X F, AUFSATZ W, ZILBERMAN D, et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation[J]. Current Biology, 2003, 13(24): 2212-2217. DOI:10.1016/j.cub.2003.11.052
[120]COKUS S J, FENG S H, ZHANG X Y, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature, 2008, 452(7184): 215-219. DOI:10.1038/nature06745
[121]LUFER K, MÄDER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution[J]. Nature, 1997, 389(6648): 251-260. DOI:10.1038/38444
[122]SCHALCH T, DUDA S, SARGENT D F, et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre[J]. Nature, 2005, 436(7047): 138-141. DOI:10.1038/nature03686
[123] [124]DEKKER J, RIPPE K, DEKKER M, et al. Capturing chromosome conformation[J]. Science, 2002, 295(5558): 1306-1311. DOI:10.1126/science.1067799
[125]HAGÈGEH, KLOUS P, BRAEM C, et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR)[J]. Nature Protocols, 2007, 2(7): 1722-1733. DOI:10.1038/nprot.2007.243
[126]DOSTIE J, RICHMOND T A, ARNAOUT R A, et al. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements[J]. Genome Research, 2006, 16(10): 1299-1309. DOI:10.1101/gr.5571506
[127]GROB S, SCHMID M W, LUEDTKE N W, et al. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture[J]. Genome Biology, 2013, 14(11): R129. DOI:10.1186/gb-2013-14-11-r129
[128]BELTON J M, MCCORD R P, GIBCUS J H, et al. Hi-C: A comprehensive technique to capture the conformation of genomes[J]. Methods, 2012, 58(3): 268-276. DOI:10.1016/j.ymeth.2012.05.001
[129]ZHANG J Y, POH H M, PEH S Q, et al. ChIA-PET analysis of transcriptional chromatin interactions[J]. Methods, 2012, 58(3): 289-299. DOI:10.1016/j.ymeth.2012.08.009
[130]JE B I, GRUEL J, LEE Y K, et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits[J]. Nature Genetics, 2016, 48(7): 785-791. DOI:10.1038/ng.3567
[131]SUZAKI T, YOSHIDA A, HIRANO H Y. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice[J]. The Plant Cell, 2008, 20(8): 2049-2058. DOI:10.1105/tpc.107.057257
[132]KLEE H J. Genetic control of floral architecture: Insights into improving crop yield[J]. Cell, 2017, 169(6): 983-984. DOI:10.1016/j.cell.2017.05.026
[133]PAUTLER M, TANAKA W, HIRANO H, et al. Grass meristems Ⅰ: Shoot apical meristem maintenance, axillary meristem determinacy and the floral transition[J]. Plant & Cell Physiology, 2013, 54(3): 302-312.
[134]XU C, LIBERATORE K L, MACALISTER C A, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nature Genetics, 2015, 47(7): 784-792. DOI:10.1038/ng.3309
[135]VAN DER KNAAP E, CHAKRABARTI M, CHU Y H, et al. What lies beyond the eye: The molecular mechanisms regulating tomato fruit weight and shape[J]. Frontiers in Plant Science, 2014, 5: 227.
[136]RODRIGUEZ-LEAL D, LEMMON Z H, MAN J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480. DOI:10.1016/j.cell.2017.08.030
相关知识
Advances in the Maintenance and Termination of Floral Meristem Regulated by C
Progress of Molecular Floral Development Research in Rice水稻花发育的分子生物学研究进展 Progress of Molecular Floral Development Research in Rice
植物花器官发育的研究 Advances in Floral Organ Development in Plants
候选院士再发植物学领域权威期刊文章
Advances in research on the mechanism of DNA methylation in plants
探讨水稻光周期开花调控途径
Advances in Active Polysaccharides in Medicinal Plants of Orchidaceae
植物侧枝发育的遗传基础及激素、代谢与环境调控
花粉超低温保存研究进展
Research Progress on Response of Hemerocallis to Abiotic Stresses
网址: Advances in research on floral meristem determinacy mechanisms in plants https://m.huajiangbk.com/newsview485970.html
上一篇: 园林植物遗传育种学复习资料 |
下一篇: 神秘的自交不亲和性——植物如何防 |