首页 > 分享 > Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses

Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses

[1]

HUSSEIN HA A, MEKKI BB, EL-SADEK MEA, EL LATEEF EE. Effect of l-ornithine application on improving drought tolerance in sugar beet plants[J]. Heliyon, 2019, 5(10): e02631. DOI:10.1016/j.heliyon.2019.e02631

[2]

LEE FC, YEAP WC, APPLETON DR, HO CL, KULAVEERASINGAM H. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments[J]. BMC Genomics, 2022, 23(1): 164. DOI:10.1186/s12864-022-08378-y

[3]

GOYAL P, MANZOOR MM, VISHWAKARMA RA, SHARMA D, DHAR MK, GUPTA S. A comprehensive transcriptome-wide identification and screening of WRKY gene family engaged in abiotic stress in Glycyrrhiza glabra[J]. Scientific Reports, 2020, 10: 373. DOI:10.1038/s41598-019-57232-x

[4]

CUI XX, YAN Q, GAN SP, XUE D, WANG HT, XING H, ZHAO JM, GUO N. GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae[J]. BMC Plant Biology, 2019, 19(1): 598. DOI:10.1186/s12870-019-2132-0

[5]

GOYAL P, DEVI R, VERMA B, HUSSAIN S, ARORA P, TABASSUM R, GUPTA S. WRKY transcription factors: evolution, regulation, and functional diversity in plants[J]. Protoplasma, 2023, 260(2): 331-348. DOI:10.1007/s00709-022-01794-7

[6]

ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5ʹ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molecular and General Genetics MGG, 1994, 244(6): 563-571. DOI:10.1007/BF00282746

[7]

WANG QS, WANG MH, ZHANG XZ, HAO BJ, KAUSHIK SK, PAN YC. WRKY gene family evolution in Arabidopsis thaliana[J]. Genetica, 2011, 139(8): 973-983. DOI:10.1007/s10709-011-9599-4

[8]

ROSS CA, LIU Y, SHEN QJ. The WRKY gene family in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2007, 49(6): 827-842. DOI:10.1111/j.1744-7909.2007.00504.x

[9]

WU GQ, LI ZQ, CAO H, WANG JL. Genome-wide identification and expression analysis of the WRKY genes in sugar beet (Beta vulgaris L.) under alkaline stress[J]. PeerJ, 2019, 7: e7817. DOI:10.7717/peerj.7817

[10]

DA SILVA MATOS MK, BENKO-ISEPPON AM, BEZERRA-NETO JP, FERREIRA-NETO JRC, WANG Y, LIU H, PANDOLFI V, AMORIM LLB, WILLADINO L, DO VALE AMORIM TC, KIDO EA, VIANELLO RP, TIMKO MP, BRASILEIRO-VIDAL AC. The WRKY transcription factor family in cowpea: genomic characterization and transcriptomic profiling under root dehydration[J]. Gene, 2022, 823: 146377. DOI:10.1016/j.gene.2022.146377

[11]

YANG Y, LIU J, ZHOUXH, LIU SY, ZHUANG Y. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant[J]. PeerJ, 2020, 8: e8777. DOI:10.7717/peerj.8777

[12]

LIU T, YU E, HOU LH, HUA PP, ZHAO MZ, WANG YF, HU J, ZHANG MP, WANG KY, WANG Y. Transcriptome-based identification, characterization, evolutionary analysis, and expression pattern analysis of the WRKY gene family and salt stress response in Panax ginseng[J]. Horticulturae, 2022, 8(9): 756. DOI:10.3390/horticulturae8090756

[13]

KUMARI S, KANTH BK, AHN JY, KIM JH, LEE GJ. Genome-wide transcriptomic identification and functional insight of lily WRKY genes responding to Botrytis fungal disease[J]. Plants, 2021, 10(4): 776. DOI:10.3390/plants10040776

[14]

WU WH, ZHU S, XU L, ZHU LM, WANG DD, LIU Y, LIU SQ, HAO ZD, LU Y, YANG LM, SHI JS, CHEN JH. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress[J]. BMC Plant Biology, 2022, 22(1): 25. DOI:10.1186/s12870-021-03371-1

[15]

DU ZK, YOU SX, ZHAO X, XIONG LH, LI JM. Genome-wide identification of WRKY genes and their responses to chilling stress in Kandelia obovata[J]. Frontiers in Genetics, 2022, 13: 875316. DOI:10.3389/fgene.2022.875316

[16]

ZHANG CJ, WANG WT, WANG DH, HU SY, ZHANG Q, WANG ZZ, CUI LJ. Genome-wide identification and characterization of the WRKY gene family in Scutellaria baicalensis Georgi under diverse abiotic stress[J]. International Journal of Molecular Sciences, 2022, 23(8): 4225. DOI:10.3390/ijms23084225

[17]

LI Y, LI X, WEI JT, CAI KW, ZHANG HZ, GE LL, REN ZJ, ZHAO CL, ZHAO XY. Genome-wide identification and analysis of the WRKY gene family and cold stress response in Acer truncatum[J]. Genes, 2021, 12(12): 1867. DOI:10.3390/genes12121867

[18]

LIU Z, SAIYINDULENG, CHANG QY, CHENG CW, ZHENG ZM, YU S. Identification of yellowhorn (Xanthoceras sorbifolium) WRKY transcription factor family and analysis of abiotic stress response model[J]. Journal of Forestry Research, 2021, 32(3): 987-1004. DOI:10.1007/s11676-020-01134-6

[19]

NAN H, GAO LZ. Genome-wide analysis of WRKY genes and their response to hormone and mechanic stresses in carrot[J]. Frontiers in Genetics, 2019, 10: 363. DOI:10.3389/fgene.2019.00363

[20]

LIUSY, ZHANG CB, GUO F, SUN Q, YU J, DONG TT, WANG X, SONG WH, LI ZY, MENG XQ, ZHU MK. A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato[J]. BMC Plant Biology, 2022, 22(1): 1-19. DOI:10.1186/s12870-021-03391-x

[21]

ZHENG JJ, ZHANG ZL, TONG T, FANG YX, ZHANG X, NIU CY, LI J, WU YH, XUE DW, ZHANG XQ. Genome-wide identification of WRKY gene family and expression analysis under abiotic stress in barley[J]. Agronomy, 2021, 11(3): 521. DOI:10.3390/agronomy11030521

[22]

CHENG YF, LUO JX, LI H, WEI F, ZHANG YQ, JIANG HY, PENG XJ. Identification of the WRKY gene family and characterization of stress-responsive genes in Taraxacum kok-saghyz Rodin[J]. International Journal of Molecular Sciences, 2022, 23(18): 10270. DOI:10.3390/ijms231810270

[23]

CHEN CB, XIE FF, SHAH K, HUA QZ, CHEN JY, ZHANG ZK, ZHAO JT, HU GB, QIN YH. Genome-wide identification of WRKY gene family in pitaya reveals the involvement of HmoWRKY42 in betalain biosynthesis[J]. International Journal of Molecular Sciences, 2022, 23(18): 10568. DOI:10.3390/ijms231810568

[24]

WEN F, WU XZ, LI TJ, JIA ML, LIAO L. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum[J]. BMC Plant Biology, 2022, 22(1): 1-16. DOI:10.1186/s12870-021-03391-x

[25]

YAO HY, YANG TY, QIAN J, DENG XY, DONG LL. Genome-wide analysis and exploration of WRKY transcription factor family involved in the regulation of shoot branching in Petunia[J]. Genes, 2022, 13(5): 855. DOI:10.3390/genes13050855

[26]

LI WX, XIAO N, WANG YW, LIU XM, CHEN ZY, GU XY, CHEN YD. Genome-wide identification, evolutionary and functional analyses of WRKY family members in Ginkgo biloba[J]. Genes, 2023, 14(2): 343. DOI:10.3390/genes14020343

[27]

HSIN KT, HSIEH MC, LEE YH, LIN KC, CHENG YS. Insight into the phylogeny and binding ability of WRKY transcription factors[J]. International Journal of Molecular Sciences, 2022, 23(5): 2895. DOI:10.3390/ijms23052895

[28]

DAI LQ, XU YP, DU ZW, SU XD, YU J. Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(23): e2102621118.

[29]

DING WJ, OUYANG QX, LI YL, SHI TT, LI L, YANG XL, JI KS, WANG LG, YUE YZ. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis[J]. Tree Physiology, 2020, 40(4): 557-572. DOI:10.1093/treephys/tpz129

[30]

WANG C, HAO XL, WANG Y, MAOZ I, ZHOU W, ZHOU ZG, KAI GY. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila[J]. Horticulture Research, 2022, 9: uhac099. DOI:10.1093/hr/uhac099

[31]

QU RJ, CAO YW, TANG XQ, SUN LQ, WEI L, WANG KC. Identification and expression analysis of the WRKY gene family in Isatis indigotica[J]. Gene, 2021, 783: 145561. DOI:10.1016/j.gene.2021.145561

[32]

GRZECHOWIAK M, RUSZKOWSKA A, SLIWIAK J, URBANOWICZ A, JASKOLSKI M, RUSZKOWSKI M. New aspects of DNA recognition by group Ⅱ WRKY transcription factor revealed by structural and functional study of AtWRKY18 DNA binding domain[J]. International Journal of Biological Macromolecules, 2022, 213: 589-601. DOI:10.1016/j.ijbiomac.2022.05.186

[33]

LV MC, LUO W, GE MM, GUAN YJ, TANG Y, CHEN WM, LV JY. A group Ⅰ WRKY gene, TaWRKY133, negatively regulates drought resistance in transgenic plants[J]. International Journal of Molecular Sciences, 2022, 23(19): 12026. DOI:10.3390/ijms231912026

[34]

XU YP, XU H, WANG B, SU XD. Crystal structures of N-terminal WRKY transcription factors and DNA complexes[J]. Protein & Cell, 2020, 11(3): 208-213.

[35]

BAI H, SI HL, ZANG JP, PANG X, YU L, CAO HZ, XING JH, ZHANG K, DONG JG. Comparative proteomic analysis of the defense response to Gibberella stalk rot in maize and reveals that ZmWRKY83 is involved in plant disease resistance[J]. Frontiers in Plant Science, 2021, 12: 694973. DOI:10.3389/fpls.2021.694973

[36]

EHSAN A, NAQVI RZ, AZHAR M, AWAN MJA, AMIN I, MANSOOR S, ASIF M. Genome-wide analysis of WRKY gene family and negative regulation of GhWRKY25 and GhWRKY33 reveal their role in whitefly and drought stress tolerance in cotton[J]. Genes, 2023, 14(1): 171. DOI:10.3390/genes14010171

[37]

VILLANO C, ESPOSITO S, D'AMELIA V, GARRAMONE R, ALIOTO D, ZOINA A, AVERSANO R, CARPUTO D. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species[J]. Scientific Reports, 2020, 10: 7196. DOI:10.1038/s41598-020-63823-w

[38]

SONG I, HONG SJ, HUH SU. Identification and expression analysis of the Solanum tuberosum StATG8 family associated with the WRKY transcription factor[J]. Plants, 2022, 11(21): 2858. DOI:10.3390/plants11212858

[39]

SUWL, BAO Y, YU XQ, XIA XL, LIU C, YIN WL. Autophagy and its regulators in response to stress in plants[J]. International Journal of Molecular Sciences, 2020, 21(23): 8889. DOI:10.3390/ijms21238889

[40]

TANG H, BI H, LIU B, LOU SL, SONG Y, TONG SF, CHEN NN, JIANG YZ, LIU JQ, LIU HH. WRKY33 interacts with WRKY12 protein to up-regulate RAP2. 2 during submergence induced hypoxia response in Arabidopsis thaliana[J]. New Phytologist, 2021, 229(1): 106-125. DOI:10.1111/nph.17020

[41]

GOVARDHANA M, KUMUDINI BS. In-silico analysis of cucumber (Cucumis sativus L.) genome for WRKY transcription factors and cis-acting elements[J]. Computational Biology and Chemistry, 2020, 85: 107212. DOI:10.1016/j.compbiolchem.2020.107212

[42]

LI HL, QU L, GUO D, WANG Y, ZHU JH, PENG SQ. Histone deacetylase interacts with a WRKY transcription factor to regulate the expression of the small rubber particle protein gene from Hevea brasiliensis[J]. Industrial Crops and Products, 2020, 145: 111989. DOI:10.1016/j.indcrop.2019.111989

[43]

BI MM, LIANG R, QU YX, WANG JW, CAO YW, LIU X, HE GR, ZHANG WL, YANG Y, TANG YC, YANG PP, XU LF, MING J. Multifaceted roles of a light-responsive factor LhWRKY44 in promoting anthocyanin accumulation in Asiatic hybrid lilies (Lilium spp.)[J]. BioRxiv, 2023, 09: 523317.

[44]

YIN M, SONG N, CHEN SY, WU JS. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata[J]. Plant Cell Reports, 2021, 40(1): 97-109. DOI:10.1007/s00299-020-02616-x

[45]

LIU F, DOU TX, HU CH, ZHONG QF, SHENG O, YANG QS, DENG GM, HE WD, GAO HJ, LI CY, DONG T, LIU SW, YI GJ, BI FC. WRKY transcription factor MaWRKY49 positively regulates pectate lyase genes during fruit ripening of Musa acuminata[J]. Plant Physiology and Biochemistry, 2023, 194: 643-650. DOI:10.1016/j.plaphy.2022.12.015

[46]

YUDS, FAN RC, ZHANG L, XUE PY, LIAO LB, HU MZ, CHENG YJ, LI JN, QI T, JING SJ, WANG QY, BHATT A, SHEN QH. HvWRKY2 acts as an immunity suppressor and targets HvCEBiP to regulate powdery mildew resistance in barley[J]. The Crop Journal, 2023, 11(1): 99-107. DOI:10.1016/j.cj.2022.05.010

[47]

HU JF, FANG HC, WANG J, YUE XX, SU MY, MAO ZL, ZOU Q, JIANG HY, GUO ZW, YU L, FENG T, LU L, PENG ZG, ZHANG ZY, WANG N, CHEN XS. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple[J]. Plant Science, 2020, 292: 110377. DOI:10.1016/j.plantsci.2019.110377

[48]

SONG XF, HUANG XX, LI Q, LIN HY, BAI SL, ZHU MZ, LI J, WANG KB. The WRKY transcription factor CsWRKY70 regulates EGCG biosynthesis by affecting CsLAR and CsUGT84A expressions in tea leaves (Camellia sinensis)[J]. Horticulturae, 2023, 9(1): 120. DOI:10.3390/horticulturae9010120

[49]

GUO W, CHEN W, GUO N, ZANG J, LIU L, ZHANG ZH, DAI HY. MdWRKY61 positively regulates resistance to Colletotrichum siamense in apple (Malus domestica)[J]. Physiological and Molecular Plant Pathology, 2022, 117: 101776. DOI:10.1016/j.pmpp.2021.101776

[50]

QU L, LI HL, GUO D, WANG Y, ZHU JH, YIN LY, PENG SQ. HbWRKY27, a group IIe WRKY transcription factor, positively regulates HbFPS1 expression in Hevea brasiliensis[J]. Scientific Reports, 2020, 10: 20639. DOI:10.1038/s41598-020-77805-5

[51]

ZHANG YY, LI BR, ZHANG M, JIA JY, SUN SL, CHEN XX, YUAN JF, BI XC, PANG XY, LI X. Transcriptome analyses and virus-induced gene silencing identify HuWRKY40 acting as a hub transcription factor in the preservation of Hylocereus undatus by trypsin[J]. Journal of Food Biochemistry, 2022, 46(12): e14437.

[52]

SUN YJ, LIU ZX, GUO JG, ZHU ZN, ZHOU YP, GUO CX, HU YH, LI JA, YAN SG, LI T, HU YJ, WU R, LI WQ, ROCHAIX JD, MIAO YC, SUN XW. WRKY33-PIF4 loop is required for the regulation of H2O2 homeostasis[J]. Biochemical and Biophysical Research Communications, 2020, 527(4): 922-928. DOI:10.1016/j.bbrc.2020.05.041

[53]

WANG T, SUN Z, WANG SQ, FENG S, WANG RM, ZHU CL, ZHONG LL, CHENG YJ, BAO MZ, ZHANG F. DcWRKY33 promotes petal senescence in carnation (Dianthus caryophyllus L.) by activating genes involved in the biosynthesis of ethylene and abscisic acid and accumulation of reactive oxygen species[J]. The Plant Journal, 2023, 113(4): 698-715. DOI:10.1111/tpj.16075

[54]

WANG HM, HOU YX, WANG S, TONG XH, TANG LQ, AJADI AA, ZHANG J, WANG YF. WRKY72 negatively regulates seed germination through interfering gibberellin pathway in rice[J]. Rice Science, 2021, 28(1): 1-5. DOI:10.1016/j.rsci.2020.11.001

[55]

YU YG, ZHANG L. Overexpression of TaWRKY53 enhances drought tolerance in transgenic Arabidopsis plants[J]. South African Journal of Botany, 2022, 148: 605-614. DOI:10.1016/j.sajb.2022.04.050

[56]

ZHANG LL, ZHANG R, YE X, ZHENG XB, TAN B, WANG W, LI ZQ, LI JD, CHENG J, FENG JC. Overexpressing VvWRKY18 from grapevine reduces the drought tolerance in Arabidopsis by increasing leaf stomatal density[J]. Journal of Plant Physiology, 2022, 275: 153741. DOI:10.1016/j.jplph.2022.153741

[57]

LI Y, CHEN H, LI ST, YANG CL, DING QY, SONG CP, WANG DJ. GhWRKY46 from upland cotton positively regulates the drought and salt stress responses in plant[J]. Environmental and Experimental Botany, 2021, 186: 104438. DOI:10.1016/j.envexpbot.2021.104438

[58]

WEN WW, WANG RY, SU LT, LV AM, ZHOU P, AN Y. MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.)[J]. Environmental and Experimental Botany, 2021, 184: 104373. DOI:10.1016/j.envexpbot.2021.104373

[59]

AHAMMED G J, LI X, WAN HJ, ZHOU GZ, CHENG Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato[J]. Scientia Horticulturae, 2020, 270: 109444. DOI:10.1016/j.scienta.2020.109444

[60]

HOU LX, FAN XX, HAO J, LIU GC, ZHANG Z, LIU X. Negative regulation by transcription factor VvWRKY13 in drought stress of Vitis vinifera L.[J]. Plant Physiology and Biochemistry, 2020, 148: 114-121. DOI:10.1016/j.plaphy.2020.01.008

[61]

LIU GY, LI B, LI X, WEI YX, HE CZ, SHI HT. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism[J]. Plant Physiology and Biochemistry, 2020, 156: 155-166. DOI:10.1016/j.plaphy.2020.09.015

[62]

DONG QL, ZHENG WQ, DUAN DY, HUANG D, WANG Q, LIU CH, LI C, GONG XQ, LI CY, MAO K, MA FW. MdWRKY30, a group Ⅱa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings[J]. Plant Science, 2020, 299: 110611. DOI:10.1016/j.plantsci.2020.110611

[63]

YANG Z, CHI XY, GUO FF, JIN XY, LUO HL, HAWAR A, CHEN YX, FENG KK, WANG B, QI JL, YANG YH, SUN B. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum[J]. Journal of Plant Physiology, 2020, 246/247: 153142. DOI:10.1016/j.jplph.2020.153142

[64]

ZHANG Y, ZHOU YY, ZHANG D, TANG XL, LI Z, SHEN C, HAN X, DENG WH, YIN WL, XIA XL. PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar[J]. Environmental and Experimental Botany, 2020, 176: 104117. DOI:10.1016/j.envexpbot.2020.104117

[65]

LIN JH, DANG FF, CHEN YP, GUAN DY, HE SL. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper[J]. Plant Physiology and Biochemistry, 2019, 145: 43-51. DOI:10.1016/j.plaphy.2019.08.013

[66]

ZHAO K, ZHANG DW, LV KW, ZHANG XM, CHENG ZH, LI RH, ZHOU BR, JIANG TB. Functional characterization of poplar WRKY75 in salt and osmotic tolerance[J]. Plant Science, 2019, 289: 110259. DOI:10.1016/j.plantsci.2019.110259

[67]

BAO F, DING AQ, CHENG TR, WANG, ZHANG QX. Genome-wide analysis of members of the WRKY gene family and their cold stress response in Prunus mume[J]. Genes, 2019, 10(11): 911. DOI:10.3390/genes10110911

[68]

FINATTO T, VIANA VE, WOYANN LG, BUSANELLO C, MAIA LC, OLIVEIRA AC. Can WRKY transcription factors help plants to overcome environmental challenges?[J]. Genetics and Molecular Biology, 2018, 41(3): 533-544. DOI:10.1590/1678-4685-gmb-2017-0232

[69]

WANG JJ, TAO F, AN F, ZOU YP, TIAN W, CHEN XM, XU XM, HU XP. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici[J]. Molecular Plant Pathology, 2017, 18(5): 649-661. DOI:10.1111/mpp.12425

[70]

LI CX, YAN JY, REN JY, SUN L, XU C, LI GX, DING ZJ, ZHENG SJ. A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1176-1192. DOI:10.1111/jipb.12888

[71]

YE J, WANG X, HU TX, ZHANG FX, WANG B, LI CX, YANG TX, LI HX, LU YE, GIOVANNONI JJ, ZHANG YY, YE ZB. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell, 2017, 29(9): 2249-2268. DOI:10.1105/tpc.17.00211

[72]

SHENG YB, YAN XX, HUANG Y, HAN YY, ZHANG C, REN YB, FAN TT, XIAO FM, LIU YS, CAO SQ. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell & Environment, 2019, 42(3): 891-903.

[73]

QIN Y, YU HX, CHENG SY, LIU Z, YU C, ZHANG XL, SU XJ, HUANG JW, SHI ST, ZOU YJ, MA FW, GONG XQ. Genome-wide analysis of the WRKY gene family in Malus domestica and the role of MdWRKY70L in response to drought and salt stresses[J]. Genes, 2022, 13(6): 1068. DOI:10.3390/genes13061068

[74]

HUANG Z, WANG JT, LI Y, SONG L, CHEN DE, LIU L, JIANG CZ. A WRKY protein, MfWRKY40, of resurrection plant Myrothamnus flabellifolia plays a positive role in regulating tolerance to drought and salinity stresses of Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(15): 8145. DOI:10.3390/ijms23158145

[75]

HUANG Z, LIU L, JIAN LL, XU WX, WANG JT, LI YX, JIANG CZ. Heterologous expression of MfWRKY7 of resurrection plant Myrothamnus flabellifolia enhances salt and drought tolerance in Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(14): 7890. DOI:10.3390/ijms23147890

[76]

SUN SF, LI X, GAO SP, NIE N, ZHANG H, YANG YF, HE SZ, LIU QC, ZHAI H. A novel WRKY transcription factor from Ipomoea trifida, ItfWRKY70, confers drought tolerance in sweet potato[J]. International Journal of Molecular Sciences, 2022, 23(2): 686. DOI:10.3390/ijms23020686

[77]

YU Y, SONG TQ, WANG YK, ZHANG MF, LI N, YU M, ZHANG SX, ZHOU HW, GUO SH, BU YN, WANG TT, XIANG JS, ZHANG XK. The wheat WRKY transcription factor TaWRKY1-2D confers drought resistance in transgenic Arabidopsis and wheat (Triticum aestivum L.)[J]. International Journal of Biological Macromolecules, 2023, 226: 1203-1217. DOI:10.1016/j.ijbiomac.2022.11.234

[78]

HUANG YM, CHEN FQ, CHAI MN, XI XP, ZHU WH, QI JG, LIU KC, MA SZ, SU H, TIAN YR, ZHANG HY, QIN Y, CAI HY. Ectopic overexpression of pineapple transcription factor AcWRKY31 reduces drought and salt tolerance in rice and Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(11): 6269. DOI:10.3390/ijms23116269

[79]

XIONG CW, ZHAO S, YU X, SUN Y, LI H, RUAN CJ, LI JB. Yellowhorn drought-induced transcription factor XsWRKY20 acts as a positive regulator in drought stress through ROS homeostasis and ABA signaling pathway[J]. Plant Physiology and Biochemistry, 2020, 155: 187-195. DOI:10.1016/j.plaphy.2020.06.037

[80]

WU M, ZHANG KM, XU YZ, WANG LN, LIU HX, QIN ZL, XIANG Y. The moso bamboo WRKY transcription factor, PheWRKY86, regulates drought tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2022, 170: 180-191. DOI:10.1016/j.plaphy.2021.10.024

[81]

NIU XP, CHEN MX, SHE ZY, ASLAM M, QI JM, QIN Y. Ectopic expression of kenaf (Hibiscus cannabinus L.) HcWRKY50 improves plants' tolerance to drought stress and regulates ABA signaling in Arabidopsis[J]. Agronomy, 2022, 12(5): 1176. DOI:10.3390/agronomy12051176

[82]

LIM C, KANG K, SHIM Y, YOO SC, PAEK NC. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology, 2022, 188(4): 1900-1916. DOI:10.1093/plphys/kiab492

[83]

SONG G, SON S, LEE KS, PARK YJ, SUH EJ, LEE SI, PARK SR. OsWRKY114 negatively regulates drought tolerance by restricting stomatal closure in rice[J]. Plants, 2022, 11(15): 1938. DOI:10.3390/plants11151938

[84]

SUN S, CHEN H, YANG ZQ, LU JY, WU DS, LUO QF, JIA J, TAN JH. Identification of WRKY transcription factor family genes in Pinus massoniana Lamb. and their expression patterns and functions in response to drought stress[J]. BMC Plant Biology, 2022, 22(1): 424. DOI:10.1186/s12870-022-03802-7

[85]

ZHANG JW, HUANG DZ, ZHAO XJ, ZHANG M, WANG Q, HOU XY, DI DL, SU BB, WANG SK, SUN P. Drought-responsive WRKY transcription factor genes IgWRKY50 and IgWRKY32 from Iris germanica enhance drought resistance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2022, 13: 983600. DOI:10.3389/fpls.2022.983600

[86]

WANG GW, WANG XW, MA HP, FAN HL, LIN F, CHEN JH, CHAI TY, WANG H. PcWRKY11, an Ⅱ-d WRKY transcription factor from Polygonum cuspidatum, enhances salt tolerance in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(8): 4357. DOI:10.3390/ijms23084357

[87]

YU SJ, HE ZX, GAO KX, ZHOU JC, LAN X, ZHONG CM, XIE J. Dioscorea composita WRKY12 is involved in the regulation of salt tolerance by directly activating the promoter of AtRCI2A[J]. Plant Physiology and Biochemistry, 2023, 196: 746-758. DOI:10.1016/j.plaphy.2023.02.020

[88]

YAN JW, LI J, ZHANG HP, LIU Y, ZHANG AY. ZmWRKY104 positively regulates salt tolerance by modulating ZmSOD4 expression in maize[J]. The Crop Journal, 2022, 10(2): 555-564. DOI:10.1016/j.cj.2021.05.010

[89]

YU SJ, LAN X, ZHOU JC, GAO KX, ZHONG CM, XIE J. Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology, 2022, 269: 153592. DOI:10.1016/j.jplph.2021.153592

[90]

LIN LK, YUAN KL, HUANG YD, DONG HZ, QIAO QH, XING CH, HUANG XS, ZHANG SL. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression[J]. Environmental and Experimental Botany, 2022, 196: 104782. DOI:10.1016/j.envexpbot.2022.104782

[91]

SU MY, WANG S, LIU WJ, YANG M, ZHANG ZY, WANG N, CHEN XS. Interaction between MdWRKY55 and MdNAC17-L enhances salt tolerance in apple by activating MdNHX1 expression[J]. Plant Science, 2022, 320: 111282. DOI:10.1016/j.plantsci.2022.111282

[92]

FANG X, LI W, YUAN HT, CHEN HW, BO C, MA Q, CAI RH. Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize[J]. Plant Physiology and Biochemistry, 2021, 167: 840-850. DOI:10.1016/j.plaphy.2021.09.010

[93]

MA ZX, JIA Y, HUANG WC, WU H, FANG X, MA Q, CAI RH. ZmWRKY17 negatively regulates salt tolerance through ABA signaling pathway in maize[J]. Social Science Research Network, 2022, 82: 1215-1231.

[94]

KHAN MS, HEMALATHA S. Autophagy and programmed cell death are critical pathways in jasmonic acid mediated saline stress tolerance in Oryza sativa[J]. Applied Biochemistry and Biotechnology, 2022, 194(11): 5353-5366. DOI:10.1007/s12010-022-04032-1

[95]

YE H, QIAO LY, GUO HY, GUO LP, REN F, BAI JF, WANG YK. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances[J]. Frontiers in Plant Science, 2021, 12: 663118. DOI:10.3389/fpls.2021.663118

[96]

LV BB, WU Q, WANG AH, LI Q, DONG QX, YANG JJ, ZHAO HX, WANG XL, CHEN H, LI CL. A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2020, 147: 43-53. DOI:10.1016/j.plaphy.2019.12.004

[97]

DU C, MA BJ, WU ZG, LI NN, ZHENG LL, WANG YC. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants[J]. Journal of Plant Physiology, 2019, 239: 38-51. DOI:10.1016/j.jplph.2019.05.012

[98]

DU C, ZHAO PP, ZHANG HR, LI NN, ZHENG LL, WANG YC. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis[J]. Journal of Plant Physiology, 2017, 215: 48-58. DOI:10.1016/j.jplph.2017.05.002

[99]

ZHU H, JIANG YN, GUO Y, HUANG JB, ZHOU MH, TANG YY, SUI JM, WANG JS, QIAO LX. A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry, 2021, 160: 175-183. DOI:10.1016/j.plaphy.2021.01.014

[100]

CHEN MX, SHE ZY, ASLAM M, LIU T, WANG ZR, QI JM, NIU XP. Genomic insights of the WRKY genes in kenaf (Hibiscus cannabinus L.) reveal that HcWRKY44 improves the plant's tolerance to the salinity stress[J]. Frontiers in Plant Science, 2022, 13: 984233. DOI:10.3389/fpls.2022.984233

[101]

HUANG XB, AMEE M, CHEN L. Bermudagrass CdWRKY50 gene negatively regulates plants' response to salt stress[J]. Environmental and Experimental Botany, 2021, 188: 104513. DOI:10.1016/j.envexpbot.2021.104513

[102]

LI PL, SONG AP, GAO CY, WANG LX, WANG YJ, SUN J, JIANG JF, CHEN FD, CHEN SM. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic Chrysanthemum and Arabidopsis plants[J]. Plant Cell Reports, 2015, 34(8): 1365-1378. DOI:10.1007/s00299-015-1793-x

[103]

GU JJ, LV FN, GAO LL, JIANG SJ, WANG Q, LI SM, YANG RT, LI Y, LI SF, WANG P. A WRKY transcription factor CbWRKY27 negatively regulates salt tolerance in Catalpa bungei[J]. Forests, 2023, 14(3): 486. DOI:10.3390/f14030486

[104]

WANG CT, RU JN, LIU YW, LI M, ZHAO D, YANG JF, FU JD, XU ZS. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants[J]. International Journal of Molecular Sciences, 2018, 19(10): 3046. DOI:10.3390/ijms19103046

[105]

WU Z, LI T, CAO X, ZHANGDH, TENG NJ. Lily WRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B[J]. Horticulture Research, 2022, 9: uhac186. DOI:10.1093/hr/uhac186

[106]

ZHU L, LI SL, OUYANG MZ, YANG LM, SUN SR, WANG YJ, CAI XX, WU GX, LI YM. Overexpression of watermelon ClWRKY20 in transgenic Arabidopsis improves salt and low-temperature tolerance[J]. Scientia Horticulturae, 2022, 295: 110848. DOI:10.1016/j.scienta.2021.110848

[107]

ZHOU TT, YANG XM, WANG GB, CAO FL. Molecular cloning and expression analysis of a WRKY transcription factor gene, GbWRKY20, from Ginkgo biloba[J]. Plant Signaling & Behavior, 2021, 16(10): 1930442.

[108]

TANG JQ, TIAN XJ, MEI EY, HE ML, GAO JW, YU J, XU M, LIU JL, SONG L, LI XF, WANG ZY, GUAN QJ, ZHAO ZG, WANG CM, BU QY. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels[J]. The Plant Cell, 2022, 34(11): 4495-4515. DOI:10.1093/plcell/koac253

[109]

MOISON M, PACHECO JM, LUCERO L, FONOUNI-FARDE C, RODRÍGUEZ-MELO J, MANSILLA N, CHRIST A, BAZIN J, BENHAMED M, IBAÑEZ F, CRESPI M, ESTEVEZ JM, ARIEL F. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold[J]. Molecular Plant, 2021, 14(6): 937-948. DOI:10.1016/j.molp.2021.03.008

[110]

WANG YG, DONG B, WANG NN, ZHENG ZF, YANG LY, ZHONG SW, FANG Q, XIAO Z, ZHAO HB. A WRKY transcription factor PmWRKY57 from Prunus mume improves cold tolerance in Arabidopsis thaliana[J]. Molecular Biotechnology, 2022, 1-10.

[111]

FEI J, WANG YS, CHENG H, SU YB, ZHONG YJ, ZHENG L. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis[J]. BMC Plant Biology, 2022, 22(1): 1-15. DOI:10.1186/s12870-021-03391-x

[112]

LI C, LI KN, LIU XY, RUAN H, ZHENG MM, YU ZJ, GAI JY, YANG SP. Transcription factor GmWRKY46 enhanced phosphate starvation tolerance and root development in transgenic plants[J]. Frontiers in Plant Science, 2021, 12: 700651. DOI:10.3389/fpls.2021.700651

[113]

CAI JS, CAI WW, HUANG XY, YANG S, WEN JY, XIA XQ, YANG F, SHI YY, GUAN DY, HE SL. Ca14-3-3 interacts with CaWRKY58 to positively modulate pepper response to low-phosphorus starvation[J]. Frontiers in Plant Science, 2021, 11: 607878. DOI:10.3389/fpls.2020.607878

[114]

WANG SC, ZHANG J, GU M, XU GH. OsWRKY108 is an integrative regulator of phosphorus homeostasis and leaf inclination in rice[J]. Plant Signaling & Behavior, 2021, 16(11): 1976545.

[115]

SHEN N, HOU SF, TU GQ, LAN WZ, JING YP. Transcription factor WRKY33 mediates the phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in Arabidopsis roots[J]. International Journal of Molecular Sciences, 2021, 22(17): 9275. DOI:10.3390/ijms22179275

[116]

SHU WJ, ZHOU QH, XIAN PQ, CHENG YB, LIAN TX, MA QB, ZHOU YG, LI HY, NIAN H, CAI ZD. GmWRKY81 encoding a WRKY transcription factor enhances aluminum tolerance in soybean[J]. International Journal of Molecular Sciences, 2022, 23(12): 6518. DOI:10.3390/ijms23126518

[117]

WANG ZJ, LIU L, SU H, GUO LQ, ZHANG JL, LI YF, XU JY, ZHANG XC, GUO YD, ZHANG N. Jasmonate and aluminum crosstalk in tomato: identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth[J]. Plant Physiology and Biochemistry, 2020, 154: 409-418. DOI:10.1016/j.plaphy.2020.06.026

[118]

POLL AA, LEE J, SANDERSON RA, BYRNE E, GATEHOUSE JA, SADANANDOM A, GATEHOUSE AMR, EDWARDS MG. Septoria leaf blotch and reduced nitrogen availability alter WRKY transcription factor expression in a codependent manner[J]. International Journal of Molecular Sciences, 2020, 21(11): 4165. DOI:10.3390/ijms21114165

[119]

WU TY, KRISHNAMOORTHI S, GOH H, LEONG R, SANSON AC, URANO D. Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions[J]. Journal of Experimental Botany, 2020, 71(10): 3227-3239. DOI:10.1093/jxb/eraa108

[120]

MALTZAHN LE, VIANA VE, BUSANELLO C, VENSKE E, GIRARDI CL, COSTA de OLIVEIRA A, PEGORARO C. ATG genes, new players on early Fe toxicity response in rice (Oryza sativa)[J]. Plant Breeding, 2020, 139(6): 1090-1102. DOI:10.1111/pbr.12860

[121]

HAN DG, HAN JX, XU TL, LI TM, YAO CY, WANG YJ, LUO DJ, YANG GH. Isolation and preliminary functional characterization of MxWRKY64, a new WRKY transcription factor gene from Malus xiaojinensis Cheng et Jiang[J]. In Vitro Cellular & Developmental Biology-Plant, 2021, 57(2): 202-213.

[122]

XIAN PQ, YANG Y, XIONG CW, GUO ZB, ALAM I, HE ZH, ZHANG YK, CAI ZD, NIAN H. Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds[J]. Frontiers in Plant Science, 2023, 14: 1133892. DOI:10.3389/fpls.2023.1133892

[123]

WU XL, CHEN Q, CHEN LL, TIAN FF, CHEN XX, HAN CY, MI JX, LIN XY, WAN XQ, JIANG BB, LIU QL, HE F, CHEN LH, ZHANG F. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113630. DOI:10.1016/j.ecoenv.2022.113630

[124]

SHI B, WU HX, ZHU WC, ZHENG B, WANG SB, ZHOU KB, QIAN MJ. Genome-wide identification and expression analysis of WRKY genes during anthocyanin biosynthesis in the mango (Mangifera indica L.)[J]. Agriculture, 2022, 12(6): 821. DOI:10.3390/agriculture12060821

[125]

GAO K, ZHOU T, HUA YP, GUAN CY, ZHANG ZH. Transcription factor WRKY23 is involved in ammonium-induced repression of Arabidopsis primary root growth under ammonium toxicity[J]. Plant Physiology and Biochemistry, 2020, 150: 90-98. DOI:10.1016/j.plaphy.2020.02.034

相关知识

Research Progress on Response of Hemerocallis to Abiotic Stresses
Regulation of plant MYB transcription factors in anther development
Review on the mechanisms of the response to salinity
The role of NAC transcription factors in flower development in plants
植物响应非生物胁迫的分子机制
植物激素ABA调控植物根系生长的研究进展
激素在植物冷胁迫应答中的角色
Molecular mechanisms of RPD3 family members in regulating plant development and environmental responses
Cloning and Expression Profile Analysis of NaERF1 Under Abiotic Stresses in Nicotiana alata
非生物逆境锻炼提高作物耐逆性的生理机制研究进展

网址: Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses https://m.huajiangbk.com/newsview624789.html

所属分类:花卉
上一篇: 植物免疫增产蛋白在水稻上的示范效
下一篇: Molecular Plant