毛蕊花糖苷药理活性和作用机制研究进展
[1] Alipieva, K., Korkina, L., Orhan, I.E. and Georgiev, M.I. (2014) Verbascoside—A Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance. Biotechnology Advances, 32, 1065-1076.
https://doi.org/10.1016/j.biotechadv.2014.07.001 [2] Xiao, Y., Ren, Q. and Wu, L. (2022) The Pharmacokinetic Property and Pharmacological Activity of Acteoside: A Review. Biomedicine & Pharmacotherapy, 153, Article ID: 113296.
https://doi.org/10.1016/j.biopha.2022.113296 [3] Yan, Y., Song, Q., Chen, X., Li, J., Li, P., Wang, Y., et al. (2017) Simultaneous Determination of Components with Wide Polarity and Content Ranges in Cistanche Tubulosa Using Serially Coupled Reverse Phase-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry. Journal of Chromatography A, 1501, 39-50.
https://doi.org/10.1016/j.chroma.2017.04.034 [4] Lu, D., Zhang, J., Yang, Z., Liu, H., Li, S., Wu, B., et al. (2013) Quantitative Analysis of Cistanches Herba Using High‐performance Liquid Chromatography Coupled with Diode Array Detection and High‐Resolution Mass Spectrometry Combined with Chemometric Methods. Journal of Separation Science, 36, 1945-1952.
https://doi.org/10.1002/jssc.201300135 [5] 石海霞, 肖承鸿, 周涛, 等. 地黄不同种质的遗传多样性和质量分析[J]. 中国中药杂志, 2018, 43(21): 4210-4216. [6] Qian, C., Wang, S., Chen, H. and Li, J. (2024) Ultrasound‐assisted Matrix Solid‐Phase Extraction Based on Deep Eutectic Solvents and Zinc Oxide: Extraction and Determination of Six Active Ingredients in Ligustri Lucidi Fructus. Journal of Separation Science, 47, e2400275.
https://doi.org/10.1002/jssc.202400275 [7] Laanet, P., Bragina, O., Jõul, P. and Vaher, M. (2024) Plantago Major and Plantago Lanceolata Exhibit Antioxidant and Borrelia Burgdorferi Inhibiting Activities. International Journal of Molecular Sciences, 25, Article 7112.
https://doi.org/10.3390/ijms25137112 [8] Pongkitwitoon, B., Putalun, W., Triwitayakorn, K., Kitisripanya, T., Kanchanapoom, T. and Boonsnongcheep, P. (2024) Anti-inflammatory Activity of Verbascoside-And Isoverbascoside-Rich Lamiales Medicinal Plants. Heliyon, 10, e23644.
https://doi.org/10.1016/j.heliyon.2023.e23644 [9] Zhang, W., Zhang, P., Xu, L., Gao, K., Zhang, J., Yao, M., et al. (2024) Ethanol Extract of Verbena Officinalis Alleviates Mcao-Induced Ischaemic Stroke by Inhibiting IL17A Pathway-Regulated Neuroinflammation. Phytomedicine, 123, Article ID: 155237.
https://doi.org/10.1016/j.phymed.2023.155237 [10] Yang, Y., Shao, J., Zhou, Q., Chen, Y., Tian, J. and Hou, L. (2024) Exploration of the Mechanisms of Callicarpa nudiflora Hook. et Arn against Influenza A Virus (H1N1) Infection. Phytomedicine, 123, Article ID: 155240.
https://doi.org/10.1016/j.phymed.2023.155240 [11] Lee, S., Seo, S., Song, S., Oh, D., Shim, J., Yoon, G., et al. (2020) HPLC Analysis and Antioxidant Evaluation of Acteoside-Rich Osmanthus fragrans Extracts. Journal of Food Quality, 2020, Article ID: 8851285.
https://doi.org/10.1155/2020/8851285 [12] Lee, H., Kim, J.H., Pang, Q.Q., Jung, P., Cho, E.J. and Lee, S. (2020) Antioxidant Activity and Acteoside Analysis of Abeliophyllum Distichum. Antioxidants, 9, Article 1148.
https://doi.org/10.3390/antiox9111148 [13] Biswas, S.K. (2016) Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Medicine and Cellular Longevity, 2016, Article ID: 5698931.
https://doi.org/10.1155/2016/5698931 [14] Lugrin, J., Rosenblatt-Velin, N., Parapanov, R. and Liaudet, L. (2013) The Role of Oxidative Stress during Inflammatory Processes. Biological Chemistry, 395, 203-230.
https://doi.org/10.1515/hsz-2013-0241 [15] Cui, J., Tang, W., Wang, W., Yi, L., Teng, F., Xu, F., et al. (2023) Acteoside Alleviates Asthma by Modulating Ros-Responsive NF-κB/MAPK Signaling Pathway. International Immunopharmacology, 116, Article ID: 109806.
https://doi.org/10.1016/j.intimp.2023.109806 [16] Song, H.S., Choi, M.Y., Ko, M.S., Jeong, J.M., Kim, Y.H., Jang, B.H., et al. (2012) Competitive Inhibition of Cytosolic Ca2+-Dependent Phospholipase A2 by Acteoside in RBL-2H3 Cells. Archives of Pharmacal Research, 35, 905-910.
https://doi.org/10.1007/s12272-012-0516-x [17] Pesce, M., Franceschelli, S., Ferrone, A., De Lutiis, M.A., Patruno, A., Grilli, A., et al. (2015) Verbascoside Down‐regulates Some Pro‐Inflammatory Signal Transduction Pathways by Increasing the Activity of Tyrosine Phosphatase SHP‐1 in the U937 Cell Line. Journal of Cellular and Molecular Medicine, 19, 1548-1556.
https://doi.org/10.1111/jcmm.12524 [18] Lee, J.Y., Woo, E. and Kang, K.W. (2005) Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase Expression by Acteoside through Blocking of AP-1 Activation. Journal of Ethnopharmacology, 97, 561-566.
https://doi.org/10.1016/j.jep.2005.01.005 [19] Sahpaz, S., Garbacki, N., Tits, M. and Bailleul, F. (2002) Isolation and Pharmacological Activity of Phenylpropanoid Esters from Marrubium Vulgare. Journal of Ethnopharmacology, 79, 389-392.
https://doi.org/10.1016/s0378-8741(01)00415-9 [20] Chang, J., Chuang, H., Hsiao, G., Hou, T., Wang, C., Huang, S., et al. (2022) Acteoside Exerts Immunomodulatory Effects on Dendritic Cells via Aryl Hydrocarbon Receptor Activation and Ameliorates Th2-Mediated Allergic Asthma by Inducing Foxp3+ Regulatory T Cells. International Immunopharmacology, 106, Article ID: 108603.
https://doi.org/10.1016/j.intimp.2022.108603 [21] Li, Y., Yu, H., Jin, Y., Li, M. and Qu, C. (2018) Verbascoside Alleviates Atopic Dermatitis-Like Symptoms in Mice via Its Potent Anti-Inflammatory Effect. International Archives of Allergy and Immunology, 175, 220-230.
https://doi.org/10.1159/000486958 [22] Wu, M., Yu, S., Chen, Y., Meng, W., Chen, H., He, J., et al. (2022) Acteoside Promotes B Cell-Derived IL-10 Production and Ameliorates Autoimmunity. Journal of Leukocyte Biology, 112, 875-885.
https://doi.org/10.1002/jlb.3ma0422-510r [23] Yoou, M., Kim, H. and Jeong, H. (2015) Acteoside Attenuates TSLP-Induced Mast Cell Proliferation via Down-Regulating MDM2. International Immunopharmacology, 26, 23-29.
https://doi.org/10.1016/j.intimp.2015.03.003 [24] Lee, J.H., Lee, J.Y., Kang, H.S., Jeong, C.H., Moon, H., Whang, W.K., et al. (2006) The Effect of Acteoside on Histamine Release and Arachidonic Acid Release in RBL-2H3 Mast Cells. Archives of Pharmacal Research, 29, 508-513.
https://doi.org/10.1007/bf02969425 [25] Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al. (2017) Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 8416763.
https://doi.org/10.1155/2017/8416763 [26] Wang, X., Chang, X., Luo, X., Su, M., Xu, R., Chen, J., et al. (2019) An Integrated Approach to Characterize Intestinal Metabolites of Four Phenylethanoid Glycosides and Intestinal Microbe-Mediated Antioxidant Activity Evaluation in Vitro Using UHPLC-Q-Exactive High-Resolution Mass Spectrometry and a 1, 1-Diphenyl-2-Picrylhydrazyl-Based Assay. Frontiers in Pharmacology, 10, Article 826.
https://doi.org/10.3389/fphar.2019.00826 [27] Li, M., Xu, T., Zhou, F., Wang, M., Song, H., Xiao, X., et al. (2018) Neuroprotective Effects of Four Phenylethanoid Glycosides on H2O2-Induced Apoptosis on PC12 Cells via the Nrf2/ARE Pathway. International Journal of Molecular Sciences, 19, Article 1135.
https://doi.org/10.3390/ijms19041135 [28] Li, M., Zhou, F., Xu, T., Song, H. and Lu, B. (2018) Acteoside Protects against 6-OHDA-Induced Dopaminergic Neuron Damage via Nrf2-Are Signaling Pathway. Food and Chemical Toxicology, 119, 6-13.
https://doi.org/10.1016/j.fct.2018.06.018 [29] Gao, W., Zheng, S., Hwang, E., Yi, T. and Wang, Y. (2021) Effects of Phenylethanol Glycosides from Orobanche cernua Loefling on UVB-Induced Skin Photodamage: A Comparative Study. Photochemical & Photobiological Sciences, 20, 599-614.
https://doi.org/10.1007/s43630-021-00038-6 [30] Sgarbossa, A., Dal Bosco, M., Pressi, G., Cuzzocrea, S., Dal Toso, R. and Menegazzi, M. (2012) Phenylpropanoid Glycosides from Plant Cell Cultures Induce Heme Oxygenase 1 Gene Expression in a Human Keratinocyte Cell Line by Affecting the Balance of NRF2 and BACH1 Transcription Factors. Chemico-Biological Interactions, 199, 87-95.
https://doi.org/10.1016/j.cbi.2012.06.006 [31] Cui, Q., Pan, Y., Zhang, W., Zhang, Y., Ren, S., Wang, D., et al. (2018) Metabolites of Dietary Acteoside: Profiles, Isolation, Identification, and Hepatoprotective Capacities. Journal of Agricultural and Food Chemistry, 66, 2660-2668.
https://doi.org/10.1021/acs.jafc.7b04650 [32] Zhao, Y., Wang, S., Pan, J. and Ma, K. (2023) Verbascoside: A Neuroprotective Phenylethanoid Glycosides with Anti-Depressive Properties. Phytomedicine, 120, Article ID: 155027.
https://doi.org/10.1016/j.phymed.2023.155027 [33] Teleanu, D.M., Niculescu, A., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., et al. (2022) An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 23, Article 5938.
https://doi.org/10.3390/ijms23115938 [34] Han, Z., Wang, B., Wen, Y., Li, Y., Feng, C., Ding, X., et al. (2024) Acteoside Alleviates Lipid Peroxidation by Enhancing Nrf2-Mediated Mitophagy to Inhibit Ferroptosis for Neuroprotection in Parkinson’s Disease. Free Radical Biology and Medicine, 223, 493-505.
https://doi.org/10.1016/j.freeradbiomed.2024.07.018 [35] Lyman, M., Lloyd, D.G., Ji, X., Vizcaychipi, M.P. and Ma, D. (2014) Neuroinflammation: The Role and Consequences. Neuroscience Research, 79, 1-12.
https://doi.org/10.1016/j.neures.2013.10.004 [36] Xia, C., Guo, Y., Lian, W., Yan, Y., Ma, B., Cheng, Y., et al. (2023) The NLRP3 Inflammasome in Depression: Potential Mechanisms and Therapies. Pharmacological Research, 187, Article ID: 106625.
https://doi.org/10.1016/j.phrs.2022.106625 [37] Wang, Y., Wu, S., Li, Q., Lang, W., Li, W., Jiang, X., et al. (2022) Salsolinol Induces Parkinson’s Disease through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside. Neurotoxicity Research, 40, 1948-1962.
https://doi.org/10.1007/s12640-022-00608-1 [38] Zhou, H., Zhang, C. and Huang, C. (2021) Verbascoside Attenuates Acute Inflammatory Injury Caused by an Intracerebral Hemorrhage through the Suppression of NLRP3. Neurochemical Research, 46, 770-777.
https://doi.org/10.1007/s11064-020-03206-9 [39] Liao, Y., Hu, J., Guo, C., Wen, A., Wen, L., Hou, Q., et al. (2024) Acteoside Alleviates Blood-Brain Barrier Damage Induced by Ischemic Stroke through Inhibiting Microglia HMGB1/TLR4/NLRP3 Signaling. Biochemical Pharmacology, 220, Article ID: 115968.
https://doi.org/10.1016/j.bcp.2023.115968 [40] Chen, S., Liu, H., Wang, S., Jiang, H., Gao, L., Wang, L., et al. (2022) The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling. Nutrients, 14, Article 1417.
https://doi.org/10.3390/nu14071417 [41] Li, M., Zhu, M., Quan, W., Huang, W., Liu, X., Zhang, C., et al. (2023) Acteoside Palliates D-Galactose Induced Cognitive Impairment by Regulating Intestinal Homeostasis. Food Chemistry, 421, Article ID: 135978.
https://doi.org/10.1016/j.foodchem.2023.135978 [42] Mao, Q., Zhang, H., Zhang, Z., Lu, Y., Pan, J., Guo, D., et al. (2024) Co-Decoction of Lilii Bulbus and Radix Rehmannia Recens and Its Key Bioactive Ingredient Verbascoside Inhibit Neuroinflammation and Intestinal Permeability Associated with Chronic Stress-Induced Depression via the Gut Microbiota-Brain Axis. Phytomedicine, 129, Article ID: 155510.
https://doi.org/10.1016/j.phymed.2024.155510 [43] Ran, Z., Ju, B., Cao, L., Hou, Q., Wen, L., Geng, R., et al. (2023) Microbiome-Metabolomics Analysis Reveals the Potential Effect of Verbascoside in Alleviating Cognitive Impairment in db/db Mice. Food & Function, 14, 3488-3508.
https://doi.org/10.1039/d2fo03110h [44] Aimaiti, M., Wumaier, A., Aisa, Y., Zhang, Y., Xirepu, X., Aibaidula, Y., et al. (2021) Acteoside Exerts Neuroprotection Effects in the Model of Parkinson’s Disease via Inducing Autophagy: Network Pharmacology and Experimental Study. European Journal of Pharmacology, 903, Article ID: 174136.
https://doi.org/10.1016/j.ejphar.2021.174136 [45] Ning, S., Chen, Y., Shao, J., Zhu, H., Zhang, Z. and Miao, J. (2024) The Effects of Acteoside on Locomotor Recovery after Spinal Cord Injury—The Role of Autophagy and Apoptosis Signaling Pathway. Biomedicine & Pharmacotherapy, 175, Article ID: 116607.
https://doi.org/10.1016/j.biopha.2024.116607 [46] Qu, Y., Ding, M., Gu, C., Zhang, L., Zhen, R., Chen, J., et al. (2022) Acteoside and Ursolic Acid Synergistically Protects H2O2-Induced Neurotrosis by Regulation of AKT/mTOR Signalling: From Network Pharmacology to Experimental Validation. Pharmaceutical Biology, 60, 1751-1761.
https://doi.org/10.1080/13880209.2022.2098344 [47] Wang, C., Cai, X., Wang, R., Zhai, S., Zhang, Y., Hu, W., et al. (2020) Neuroprotective Effects of Verbascoside against Alzheimer’s Disease via the Relief of Endoplasmic Reticulum Stress in Aβ-Exposed U251 Cells and APP/PS1 Mice. Journal of Neuroinflammation, 17, Article No. 309.
https://doi.org/10.1186/s12974-020-01976-1 [48] Gao, L., Wang, D., Ren, J., Tan, X., Chen, J., Kong, Z., et al. (2023) Acteoside Ameliorates Learning and Memory Impairment in APP/PS1 Transgenic Mice by Increasing Aβ Degradation and Inhibiting Tau Hyperphosphorylation. Phytotherapy Research, 38, 1735-1744.
https://doi.org/10.1002/ptr.8006 [49] Luhata, L.P., Yoshida, Y. and Usuki, T. (2024) Natural Products from Odontonema Strictum Promote Neurite Outgrowth in Neuronal PC12 Cells. Bioorganic Chemistry, 147, Article ID: 107389.
https://doi.org/10.1016/j.bioorg.2024.107389 [50] Gao, L., Peng, X., Huo, S., Liu, X. and Yan, M. (2015) Memory Enhancement of Acteoside (Verbascoside) in a Senescent Mice Model Induced by a Combination of D-Gal and ALCL3. Phytotherapy Research, 29, 1131-1136.
https://doi.org/10.1002/ptr.5357 [51] Khan, R.A., Hossain, R., Roy, P., Jain, D., Mohammad Saikat, A.S., Roy Shuvo, A.P., et al. (2022) Anticancer Effects of Acteoside: Mechanistic Insights and Therapeutic Status. European Journal of Pharmacology, 916, Article ID: 174699.
https://doi.org/10.1016/j.ejphar.2021.174699 [52] Budzianowska, A., Totoń, E., Romaniuk-Drapała, A., Kikowska, M. and Budzianowski, J. (2023) Cytotoxic Effect of Phenylethanoid Glycosides Isolated from Plantago Lanceolata L. Life, 13, Article 556.
https://doi.org/10.3390/life13020556 [53] Cheimonidi, C., Samara, P., Polychronopoulos, P., Tsakiri, E.N., Nikou, T., Myrianthopoulos, V., et al. (2018) Selective Cytotoxicity of the Herbal Substance Acteoside against Tumor Cells and Its Mechanistic Insights. Redox Biology, 16, 169-178.
https://doi.org/10.1016/j.redox.2018.02.015 [54] Herbert, J.M., Maffrand, J.P., Taoubi, K., Augereau, J.M., Fouraste, I. and Gleye, J. (1991) Verbascoside Isolated from Lantana Camara, an Inhibitor of Protein Kinase C. Journal of Natural Products, 54, 1595-1600.
https://doi.org/10.1021/np50078a016 [55] Zhou, L., Feng, Y., Jin, Y., Liu, X., Sui, H., Chai, N., et al. (2014) Verbascoside Promotes Apoptosis by Regulating HIPK2-P53 Signaling in Human Colorectal Cancer. BMC Cancer, 14, Article No. 747.
https://doi.org/10.1186/1471-2407-14-747 [56] Ren, Y., He, J., Zhao, W. and Ma, Y. (2022) The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization. Frontiers in Oncology, 12, Article 901922.
https://doi.org/10.3389/fonc.2022.901922 [57] Jiang, J., Cheng, R., Song, A., Lou, Y. and Fan, G. (2024) Multi-Omics Analysis Reveals Mechanism of Schisandra Chinensis Lignans and Acteoside on EMT in Hepatoma Cells via ERK1/2 Pathway. Functional & Integrative Genomics, 24, Article No. 112.
https://doi.org/10.1007/s10142-024-01351-w [58] Wu, C., Chen, C., Hsieh, P., Lee, Y., Kuo, W.W., Wu, R.C., et al. (2021) Verbascoside Inhibits the Epithelial‐Mesenchymal Transition of Prostate Cancer Cells through High‐Mobility Group Box 1/Receptor for Advanced Glycation End‐products/TGF‐β Pathway. Environmental Toxicology, 36, 1080-1089.
https://doi.org/10.1002/tox.23107 [59] Elhashani, S., Glenn, M., Raymant, M., Schmid, M.C. and Mielgo, A. (2024) Expression of Versican Isoforms V0/V1 by Pancreatic Cancer Associated Fibroblasts Increases Fibroblast Proliferation. Pancreatology, 24, 719-731.
https://doi.org/10.1016/j.pan.2024.04.008 [60] Ji, M., Sun, J. and Zhao, J. (2022) Verbascoside Represses Malignant Phenotypes of Esophageal Squamous Cell Carcinoma Cells by Inhibiting CDC42 via the HMGB1/RAGE Axis. Human & Experimental Toxicology, 41, 1-9.
https://doi.org/10.1177/09603271221127429 [61] Jia, W., Wang, Z., Zou, M., Lin, J., Li, Y., Zhang, L., et al. (2018) Verbascoside Inhibits Glioblastoma Cell Proliferation, Migration and Invasion While Promoting Apoptosis through Upregulation of Protein Tyrosine Phosphatase SHP-1 and Inhibition of STAT3 Phosphorylation. Cellular Physiology and Biochemistry, 47, 1871-1882.
https://doi.org/10.1159/000491067 [62] Attia, Y.M., El-Kersh, D.M., Wagdy, H.A. and Elmazar, M.M. (2018) Verbascoside: Identification, Quantification, and Potential Sensitization of Colorectal Cancer Cells to 5-FU by Targeting PI3K/AKT Pathway. Scientific Reports, 8, Article No. 16939.
https://doi.org/10.1038/s41598-018-35083-2 [63] AkgunCagliyan, G., CortDonmez, A., KilicToprak, E. and Altintas, F. (2022) Verbascoside Potentiates the Effect of Tyrosine Kinase Inhibitors on the Induction of Apoptosis and Oxidative Stress via the Abl-Mediated MAPK Signalling Pathway in Chronic Myeloid Leukaemia. Experimental and Therapeutic Medicine, 24, Article No. 514.
https://doi.org/10.3892/etm.2022.11441 [64] Martins, G.R., da Fonseca, T.S., Martínez-Fructuoso, L., Simas, R.C., Silva, F.T., Salimena, F.R.G., et al. (2019) Antifungal Phenylpropanoid Glycosides from Lippia rubella. Journal of Natural Products, 82, 566-572.
https://doi.org/10.1021/acs.jnatprod.8b00975 [65] Shi, C., Ma, Y., Tian, L., Li, J., Qiao, G., Liu, C., et al. (2022) Verbascoside: An Efficient and Safe Natural Antibacterial Adjuvant for Preventing Bacterial Contamination of Fresh Meat. Molecules, 27, Article 4943.
https://doi.org/10.3390/molecules27154943 [66] Biasibetti, E., Bruni, N., Bigliati, M. and Capucchio, M.T. (2017) Lactoferricin/Verbascoside Topical Emulsion: A Possible Alternative Treatment for Atopic Dermatitis in Dogs. Natural Product Research, 32, 2107-2110.
https://doi.org/10.1080/14786419.2017.1365066 [67] Li, X., Hou, Y., Zou, H., Wang, Y., Xu, Y., Wang, L., et al. (2024) Unraveling the Efficacy of Verbascoside in Thwarting MRSA Pathogenicity by Targeting Sortase A. Applied Microbiology and Biotechnology, 108, Article No. 360.
https://doi.org/10.1007/s00253-024-13202-6 [68] Yang, Y., Wang, X., Gao, Y., Wang, H. and Niu, X. (2021) Insight into the Dual Inhibitory Mechanism of Verbascoside Targeting Serine/Threonine Phosphatase Stp1 against Staphylococcus Aureus. European Journal of Pharmaceutical Sciences, 157, Article ID: 105628.
https://doi.org/10.1016/j.ejps.2020.105628 [69] Fazly Bazzaz, B.S., Khameneh, B., Zahedian Ostad, M.R., et al. (2018) In Vitro Evaluation of Antibacterial Activity of Verbascoside, Lemon Verbena Extract and Caffeine in Combination with Gentamicin against Drug-Resistant Staphylo-coccus aureus and Escherichia coli Clinical Isolates. Avicenna Journal of Phytomedicine, 8, 246-253. [70] Zhang, S.J., Zhang, Y.F., Bai, X.H., Zhou, M.Q., Zhang, Z.Y., Zhang, S.X., et al. (2024) Integrated Network Pharmacology Analysis and Experimental Validation to Elucidate the Mechanism of Acteoside in Treating Diabetic Kidney Disease. Drug Design, Development and Therapy, 18, 1439-1457.
https://doi.org/10.2147/dddt.s445254 [71] Li, X., Liu, Z., He, Z., Wang, X., Li, R., Wang, J., et al. (2023) Acteoside Protects Podocyte against Apoptosis through Regulating AKT/GSK-3β Signaling Pathway in db/db Mice. BMC Endocrine Disorders, 23, Article No. 230.
https://doi.org/10.1186/s12902-023-01483-3 [72] Wang, Q., Dai, X., Xiang, X., Xu, Z., Su, S., Wei, D., et al. (2021) A Natural Product of Acteoside Ameliorate Kidney Injury in Diabetes db/db Mice and HK-2 Cells via Regulating NADPH/Oxidase‐TGF‐β/Smad Signaling Pathway. Phytotherapy Research, 35, 5227-5240.
https://doi.org/10.1002/ptr.7196 [73] Zhou, M., Zhang, S., Bai, X., Cai, Y., Zhang, Z., Zhang, P., et al. (2024) Acteoside Delays the Fibrosis Process of Diabetic Nephropathy by Anti-Oxidation and Regulating the Autophagy-Lysosome Pathway. European Journal of Pharmacology, 978, Article ID: 176715.
https://doi.org/10.1016/j.ejphar.2024.176715 [74] Gao, W., Gao, S., Zhang, Y., Wang, M., Liu, Y., Li, T., et al. (2024) Altered Metabolic Profiles and Targets Relevant to the Protective Effect of Acteoside on Diabetic Nephropathy in db/db Mice Based on Metabolomics and Network Pharmacology Studies. Journal of Ethnopharmacology, 318, Article ID: 117073.
https://doi.org/10.1016/j.jep.2023.117073 [75] Gao, W., Zhou, Y., Li, C., Liu, T., Zhao, H., Wang, M., et al. (2023) Studies on the Metabolism and Mechanism of Acteoside in Treating Chronic Glomerulonephritis. Journal of Ethnopharmacology, 302, Article ID: 115866.
https://doi.org/10.1016/j.jep.2022.115866 [76] Lian, J., Xu, Y., Shi, J., Liu, P., Hua, Y., Zhang, C., et al. (2024) Acteoside and Isoacteoside Alleviate Renal Dysfunction and Inflammation in Lipopolysaccharide-Induced Acute Kidney Injuries through Inhibition of NF-κB Signaling Pathway. PLOS ONE, 19, e0303740.
https://doi.org/10.1371/journal.pone.0303740 [77] Safari Samangani, M., Mehri, S., Aminifard, T., Jafarian, A., Yazdani, P.F. and Hosseinzadeh, H. (2024) Effect of Verbascoside against Acute Kidney Injury Induced by Rhabdomyolysis in Rats. Naunyn-Schmiedeberg’s Archives of Pharmacology.
https://doi.org/10.1007/s00210-024-03144-1 [78] Mao, Y., Yu, J., Da, J., Yu, F. and Zha, Y. (2023) Acteoside Alleviates UUO-Induced Inflammation and Fibrosis by Regulating the HMGN1/TLR4/TREM1 Signaling Pathway. PeerJ, 11, e14765.
https://doi.org/10.7717/peerj.14765 [79] Jia, K., Zhang, Y., Luo, R., Liu, R., Li, Y., Wu, J., et al. (2023) Acteoside Ameliorates Hepatic Ischemia-Reperfusion Injury via Reversing the Senescent Fate of Liver Sinusoidal Endothelial Cells and Restoring Compromised Sinusoidal Networks. International Journal of Biological Sciences, 19, 4967-4988.
https://doi.org/10.7150/ijbs.87332 [80] Salvoza, N., Bedin, C., Saccani, A., Tiribelli, C. and Rosso, N. (2022) The Beneficial Effects of Triterpenic Acid and Acteoside in an in Vitro Model of Nonalcoholic Steatohepatitis (NASH). International Journal of Molecular Sciences, 23, Article 3562.
https://doi.org/10.3390/ijms23073562 [81] Khullar, M., Sharma, A., Wani, A., Sharma, N., Sharma, N., Chandan, B.K., et al. (2019) Acteoside Ameliorates Inflammatory Responses through NFkB Pathway in Alcohol Induced Hepatic Damage. International Immunopharmacology, 69, 109-117.
https://doi.org/10.1016/j.intimp.2019.01.020 [82] Zhu, J., Li, G., Zhou, J., Xu, Z. and Xu, J. (2022) Cytoprotective Effects and Antioxidant Activities of Acteoside and Various Extracts of Clerodendrum cyrtophyllum Turcz Leaves against T-Bhp Induced Oxidative Damage. Scientific Reports, 12, Article No. 12630.
https://doi.org/10.1038/s41598-022-17038-w [83] Chen, C., Tung, H., Tseng, Y., Huang, J., Shi, L. and Ye, Y. (2022) Verbascoside and Isoverbascoside Ameliorate Transforming Growth Factor β1-Induced Collagen Expression by Lung Fibroblasts through Smad/non-Smad Signaling Pathways. Life Sciences, 308, Article ID: 120950.
https://doi.org/10.1016/j.lfs.2022.120950 [84] Guo, J., Liu, Q., Zhu, F., Li, M., Li, J., Guo, L., et al. (2022) Acteoside Attenuates Acute Lung Injury Following Administration of Cobra Venom Factor to Mice. Heliyon, 8, e11622.
https://doi.org/10.1016/j.heliyon.2022.e11622 [85] Jing, W., Chunhua, M. and Shumin, W. (2015) Effects of Acteoside on Lipopolysaccharide-Induced Inflammation in Acute Lung Injury via Regulation of NF-κB Pathway in Vivo and in Vitro. Toxicology and Applied Pharmacology, 285, 128-135.
https://doi.org/10.1016/j.taap.2015.04.004 [86] Ling, X., Zhou, J., Jin, T., Xu, W., Sun, X., Li, W., et al. (2022) Acteoside Attenuates RSV-Induced Lung Injury by Suppressing Necroptosis and Regulating Metabolism. Frontiers in Pharmacology, 13, Article 870928.
https://doi.org/10.3389/fphar.2022.870928 [87] Zhang, S., Gong, F., Liu, J., Liu, T., Yang, J. and Hu, J. (2022) A Novel PHD2 Inhibitor Acteoside from Cistanche Tubulosa Induces Skeletal Muscle Mitophagy to Improve Cancer-Related Fatigue. Biomedicine & Pharmacotherapy, 150, Article ID: 113004.
https://doi.org/10.1016/j.biopha.2022.113004 [88] Sciandra, F., Bottoni, P., De Leo, M., Braca, A., Brancaccio, A. and Bozzi, M. (2023) Verbascoside Elicits Its Beneficial Effects by Enhancing Mitochondrial Spare Respiratory Capacity and the Nrf2/HO-1 Mediated Antioxidant System in a Murine Skeletal Muscle Cell Line. International Journal of Molecular Sciences, 24, Article 15276.
https://doi.org/10.3390/ijms242015276 [89] Zhu, M., Zhu, H., Tan, N., Wang, H., Chu, H. and Zhang, C. (2016) Central Anti-Fatigue Activity of Verbascoside. Neuroscience Letters, 616, 75-79.
https://doi.org/10.1016/j.neulet.2016.01.042 [90] Guo, Z.L., Qian, Q.Y., Li, X.L., et al. (2023) Efficacy of Verbascoside, Echinacoside, Crenatoside on Alti-tude-Induced Fatigue in Rats and Possible Mechanism. Journal of Traditional Chinese Medicine, 43, 934-943. [91] Wilkinson, H.N. and Hardman, M.J. (2020) Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biology, 10, Article ID: 200223.
https://doi.org/10.1098/rsob.200223 [92] de Moura Sperotto, N.D., Steffens, L., Veríssimo, R.M., Henn, J.G., Péres, V.F., Vianna, P., et al. (2018) Wound Healing and Anti-Inflammatory Activities Induced by a Plantago Australis Hydroethanolic Extract Standardized in Verbascoside. Journal of Ethnopharmacology, 225, 178-188.
https://doi.org/10.1016/j.jep.2018.07.012 [93] Kanlayavattanakul, M., Khongkow, M. and Lourith, N. (2024) Wound Healing and Photoprotection Properties of Acanthus ebracteatus Vahl. Extracts Standardized in Verbascoside. Scientific Reports, 14, Article No. 1904.
https://doi.org/10.1038/s41598-024-52511-8 [94] Si, N., Kanazawa, H., Okuyama, K., Imada, K., Wang, H., Yang, J., et al. (2018) Involvement of Catechols in Acteoside in the Activation of Promatrix Metalloproteinase-2 and Membrane Type-1-Matrix Metalloproteinase Expression via a Phosphatidylinositol-3-Kinase Pathway in Human Dermal Fibroblasts. Biological and Pharmaceutical Bulletin, 41, 1530-1536.
https://doi.org/10.1248/bpb.b18-00107 [95] Kido, D., Mizutani, K., Takeda, K., Mikami, R., Matsuura, T., Iwasaki, K., et al. (2017) Impact of Diabetes on Gingival Wound Healing via Oxidative Stress. PLOS ONE, 12, e0189601.
https://doi.org/10.1371/journal.pone.0189601 [96] Hsieh, P., Yu, C., Chu, P. and Hsieh, P. (2021) Verbascoside Protects Gingival Cells against High Glucose-Induced Oxidative Stress via PKC/HMGB1/RAGE/NFκB Pathway. Antioxidants, 10, Article 1445.
https://doi.org/10.3390/antiox10091445 [97] Amin, B., Poureshagh, E. and Hosseinzadeh, H. (2015) The Effect of Verbascoside in Neuropathic Pain Induced by Chronic Constriction Injury in Rats. Phytotherapy Research, 30, 128-135.
https://doi.org/10.1002/ptr.5512 [98] Hara, K., Haranishi, Y. and Terada, T. (2022) Verbascoside Administered Intrathecally Attenuates Hyperalgesia via Activating Mu‐Opioid Receptors in a Rat Chronic Constriction Injury Model. European Journal of Pain, 26, 1322-1332.
https://doi.org/10.1002/ejp.1952 [99] Sun, Y., Ni, X., Cheng, S., Yu, X., Jin, X., Chen, L., et al. (2023) Acteoside Improves Adipocyte Browning by CDK6-Mediated mTORC1-TFEB Pathway. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1868, Article ID: 159364.
https://doi.org/10.1016/j.bbalip.2023.159364
相关知识
Verbascoside毛蕊花糖苷(TJC160毛蕊花甙) PKC抑制剂/NF
毛蕊花糖苷联合抗癌治疗剂在医药上的应用及药物组合物
红花的化学成分及其药理活性研究进展
红花属植物化学成分和药理活性研究进展 Research Progress on Chemical Constituents and Pharmacological Activities of Carthamus L.
角蒿属植物化学成分及药理活性研究进展
十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展
百合科药用植物丫蕊花的研究进展
蓝盆花属植物化学成分及药理活性研究进展
野扇花属植物的化学成分和药理活性研究进展.pdf全文
药用植物挥发油药理活性及其临床应用研究进展
网址: 毛蕊花糖苷药理活性和作用机制研究进展 https://m.huajiangbk.com/newsview667281.html