首页 > 分享 > 甜瓜果皮颜色遗传分析及基因定位

甜瓜果皮颜色遗传分析及基因定位

为探究甜瓜皮色性状的遗传规律,定位目标性状关联的遗传位点,选用黄皮材料B432 和绿皮材料B168、B421 为亲本,构建6 世代遗传群体(P1、P2、F1、F2、BC1P1、BC1P2),用于分析甜瓜皮色性状的遗传规律;同时,利用BSA-seq 和全基因组重测序技术,定位控制甜瓜皮色的基因。结果表明,甜瓜皮色由2对基因控制,其中绿色对白色具有显性上位性效应,白色对黄色为显性。同时,将皮色相关基因分别定位于4 号染色体和10 号染色体的0.02~5.7 Mb和0.08~9.5 Mb区间。试验初步定位了控制甜瓜皮色的基因,为后续进行基因精细定位提供依据,为开展甜瓜皮色的分子标记辅助选择奠定基础。

Abstract

To explore the inheritance and genetic loci of melon rind color, the yellow-rind line B432 and green-rind lines B168 and B421 were used as parent to construct six generations of genetic population (P1, P2, F1, F2, BC1P1, BC1P2) to analyze the inheritance of melon rind color. In addition, the BSA-seq and whole genome resequencing technology were used to locate the genetic loci responsible for melon rind color. The results show that the melon rind color is controlled by two genes, of which green has a dominant epistatic effect on white and white is dominant to yellow. The rind color related genes are mapped to the 0.02-5.7 Mb and 0.08- 9.5 Mb intervals of chromosome 4 and chromosome 10, respectively. This experiment preliminarily elucidates the genetic mechanism and the location of the genes controlling the rind color of melon, and could provide a basis for the subsequent fine-grained gene mapping and molecular marker-assisted selection of melon rind color.

关键词

甜瓜;果皮颜色;遗传分析;基因定位;BSA{{custom_keyword}} /

Key words

melon; rind color; genetic analysis; gene mapping; BSA{{custom_keyword}} /

欧点点,赵光伟,贺玉花,王平勇,徐志红,孔维虎,张健,徐永阳.甜瓜果皮颜色遗传分析及基因定位. 中国农学通报. 2019, 35(13): 64-69 https://doi.org/10.11924/j.issn.1000-6850.casb18110127

参考文献

[1] Chayut N, Yuan H, Ohali S, et al. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with orange allelic variation and fruit β-carotene accumulation in melon fruit[J]. BMC Plant Biology,2015,15(1):274.
[2] Freilich S, Lev S, Gonda I, et al. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits[J]. BMC Plant Biology,15,1(2015-03-03),2015,15(1):71.
[3] 李德泽.浅谈薄皮甜瓜育种[J].北方园艺,2003(2):4-5.
[4] Cuevas H E, Staub J E, Simon P W, et al. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon ( Cucumis melo, L.)[J]. Theoretical and Applied Genetics,2009,119(4):741-756.
[5] Cuevas H E, Staub J E, Simon P W. Inheritance of beta-carotene-associated mesocarp color and fruit maturity of melon ( Cucumis melo, L.)[J]. Euphytica,2010,173(1):129-140.
[6] 杨光华,范荣,杨小锋,等.甜瓜果实颜色3个质量性状基因的定位[J].园艺学报,2014,41(5):898-906.
[7] Feder A, Burger J, Gao S, et al. Focus on Metabolism: A kelch domain-containing F-Box coding gene negatively regulates flavonoid accumulation in muskmelon[J]. Plant Physiology,2015,169(3):1714.
[8] Gur A, Tzuri G, Meir A, et al. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon ( Cucumis melo )[J]. Scientific Reports,2017,7(1):9770.
[9] Garcia-Mas J, Benjak A, Sanseverino W, et al. The genome of melon (Cucumis melo L.)[J]. Proceedings of the National Academy of Sciences,2012,109(29):11872
[10] Takagi H, Abe A, Yoshida K, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. Plant Journal,2013,74(1):174-183.
[11] Sun J, Yang L, Wang J, et al. Identification of a cold-tolerant locus in rice ( Oryza sativa, L.) using bulked segregant analysis with a next-generation sequencing strategy[J]. Rice,2018,11(1):24.
[12] Li P, Du C, Zhang Y, et al. Combined bulked segregant sequencing and traditional linkage analysis for identification of candidate gene for purple leaf sheath in maize[J]. Plos One,2018,13(1):e0190670.
[13] 张尧锋,张冬青,余华胜,等.基于极端混合池(BSA)全基因组重测序的甘蓝型油菜有限花序基因定位[J].中国农业科学,2018,51(16): 3029-3039.
[14] Chagué V, Mercier J C, Guénard M, et al. Identification of RAPD markers linked to a locus involved in quantitative resistance, to TYLCV in tomato by bulked segregant analysis[J]. Theoretical and Applied Genetics,1997,95(4):671-677.
[15] Dong W, Wu D, Li G, et al. Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon[J]. Scientific Reports,2018,8(1):2908.
[16] Meng R, Zhang J, An L, et al. Expression profiling of several gene families involved in anthocyanin biosynthesis in apple ( Malus domestica, Borkh.) skin during fruit development[J]. Journal of Plant Growth Regulation,2016,35(2):1-16.
[17] Moriya S, Kunihisa M, Okada K, et al. Allelic composition of MdMYB1, drives red skin color intensity in apple ( Malus × domestica, Borkh.) and its application to breeding[J]. Euphytica,2017,213(4):78.
[18] Ballester A R, Molthoff J, De R V, et al. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color[J]. Plant Physiology,2010,152(1):71-84.
[19] Jung H J, Veerappan K, Hwang I, et al. New SNPs and InDel Variations in SlMYB12, associated with regulation of pink color in tomato[J]. Tropical Plant Biology,2017:1-8.
[20] Liu H Q, Jiao J Q, Liang X J, et al. Map-based cloning, identifcation and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics,2016,129:1247–1256
[21] 段颖,向成钢,刘新艳,等.印度南瓜果皮结构与色素组成对果皮颜色的影响[C].中国园艺学会南瓜研究分会2017年学术年会论文集,2017.
[22] 白立华,刘艳,孙喜梅,等.厚皮甜瓜果实主要性状遗传规律的初步研究[C].北方遗传资源的保护与利用研讨会论文汇编,2010.
[23] Monforte A J, Oliver M, Gonzalo M J, et al. Identification of quantitative trait loci involved in fruit quality traits in melon ( Cucumis melo, L.)[J]. Theoretical and Applied Genetics,2004,108(4):750-758.

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

相关知识

甜瓜单性花相关基因CmACS
利用SSR分子标记构建甜瓜遗传图谱
甜瓜白粉病抗性遗传育种研究进展
花卉遗传连锁图谱构建及QTL定位研究进展
大豆抗花叶病遗传、细胞超微结构分析及基因定位
玉米抗矮花叶病遗传分析及数量性状基因定位
大豆对大豆花叶病毒抗性遗传、抗性基因精细定位及表达分析
抗病相关基因在黄瓜和甜瓜中的遗传转化及功能初步分析
普通野生稻抗细菌性条斑病基因的遗传分析与定位
一份水稻花器官突变体的形态发生、性状遗传分析及相关基因的分子标记定位

网址: 甜瓜果皮颜色遗传分析及基因定位 https://m.huajiangbk.com/newsview1131563.html

所属分类:花卉
上一篇: 种皮色泽; 红色种皮; 褐色种皮
下一篇: 葡萄果实转色过程中线粒体呼吸代谢