Viola IL, Gonzalez DH. Structure and evolution of plant homeobox genes[M]. Plant Transcription Factors, Elsevier, 2016: 101-112.
[5]Zhu T, Moschou PN, Alvarez JM, et al. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce[J]. BMC Plant Biology, 2016, 16(1): 9.
[6]Palovaara J, de Zeeuw T, Weijers D. Tissue and organ initiation in the plant embryo: a first time for everything[J]. Annual Review of Cell and Developmental Biology, 2016, 32: 47-75. DOI:10.1146/annurev-cellbio-111315-124929
[7]Kwong RW, Bui AQ, Lee H, et al. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development[J]. The Plant Cell, 2003, 15(1): 5-18.
[8]Jo L, Pelletier JM, Harada JJ. Central role of the LEAFY COTYLEDON1 transcription factor in seed development[J]. Journal of Integrative Plant Biology, 2019, 61(5): 564-580. DOI:10.1111/jipb.12806
[9]Pelletier JM, Kwong RW, Park S, et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]. Proceedings of the National Academy of Sciences, 2017, 114(32): E6710-E6719. DOI:10.1073/pnas.1707957114
[10]Hu Y, Zhou L, Huang M, et al. Gibberellins play an essential role in late embryogenesis of Arabidopsis[J]. Nature Plants, 2018, 4(5): 289-298. DOI:10.1038/s41477-018-0143-8
[11]Boulard C, Thévenin J, Tranquet O, et al. LEC1(NF-YB9)directly interacts with LEC2 to control gene expression in seed[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2018, 1861(5): 443-450. DOI:10.1016/j.bbagrm.2018.03.005
[12]Orłowska A, Igielski R, łagowska K, et al. Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 2017, 129(1): 119-132.
[13]Huang M, Hu Y, Liu X, et al. Arabidopsis LEAFY COTYLEDON1 controls cell fate determination during post-embryonic development[J]. Frontiers in Plant Science, 2015(6): 955.
[14] [15]Angenent GC, Franken J, Busscher M, et al. A novel class of MADS box genes is involved in ovule development in petunia[J]. The Plant Cell, 1995, 7(10): 1569-1582.
[16]Chen Y, Tsai W. The Function of C/D-class MADS box genes in orchid gynostemium and ovule development[M]. Orchid Biotechnology Ⅲ, World Scientific, 2017: 289-308.
[17]Suárez Baron H, Pérez Mesa P, Ambrose BA, et al. Deep into the aristolochia flower: Expression of C, D, and E-class genes in Aristolochia fimbriata(Aristolochiaceae)[J]. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328(1-2): 55-71. DOI:10.1002/jez.b.22686
[18]Ehlers K, Bhide AS, Tekleyohans DG, et al. The MADS box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana[J]. PLoS One, 2016, 11(10): e0165075. DOI:10.1371/journal.pone.0165075
[19] [20] [21] [22]Tadashi K, Nobutaka M, Masaru OT, et al. NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis[J]. Plant Cell, 2008, 20(10): 2631-2642. DOI:10.1105/tpc.108.060160
[23]Christianson JA, Wilson IW, Llewellyn DJ, et al. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment[J]. Plant Physiology, 2010, 149(4): 1724-1738.
[24] [25] [26]Waters BM, Uauy C, Dubcovsky J, et al. Wheat(Triticum aestivum)NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain[J]. Journal of Experimental Botany, 2009, 60(15): 4263-4274. DOI:10.1093/jxb/erp257
[27]Uauy C, Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314(5803): 1298-1301. DOI:10.1126/science.1133649
[28] [29] [30] [31] [32]Kondou Y, Nakazawa M, Kawashima M, et al. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth[J]. Plant Physiology, 2008, 147(4): 1924-1935. DOI:10.1104/pp.108.118364
[33]Feng F, Qi W, Lv Y, et al. OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism[J]. The Plant Cell, 2018, 30(2): 375-396.
[34]Tanabe N, Noshi M, Mori D, et al. The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana[J]. Journal of Plant Research, 2019, 132(1): 93-105. DOI:10.1007/s10265-018-1068-z
[35]Li X, Chen L, Hong M, et al. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa[J]. PLoS One, 2012, 7(9): e44145. DOI:10.1371/journal.pone.0044145
[36]Gonzalez A, Brown M, Hatlestad G, et al. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway[J]. Developmental Biology, 2016, 419(1): 54-63. DOI:10.1016/j.ydbio.2016.03.031
[37]Padmaja LK, Agarwal P, Gupta V, et al. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB)[J]. Theoretical and Applied Genetics, 2014, 127(2): 339-347. DOI:10.1007/s00122-013-2222-6
[38] [39]Matsui K, Hiratsu K, Koyama T, et al. A chimeric AtMYB23 repressor induces hairy roots, elongation of leaves and stems, and inhibition of the deposition of mucilage on seed coats in Arabidopsis[J]. Plant Cell Physiology, 2005, 46(1): 147-155. DOI:10.1093/pcp/pci005
[40]Luo X, Zhao H, Yao P, et al. An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and Proanthocyanidins from Tartary buckwheat[J]. Journal of Plant Growth Regulation, 2018, 37(1): 76-84. DOI:10.1007/s00344-017-9709-3
[41]Herniter IA, Muñoz-Amatriaín M, Lo S, et al. Identification of candidate genes controlling black seed coat and pod tip color in cowpea(Vigna unguiculata[L. ]Walp)[J]. G3: Genes, Genomes, Genetics, 2018, 8(10): 3347-3355.
[42] [43] [44]Kagaya Y, Toyoshima R, Okuda R, et al. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3[J]. Plant and Cell Physiology, 2005, 46(3): 399-406. DOI:10.1093/pcp/pci048
[45]Mu J, Tan H, Zheng Q, et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148(2): 1042-1054. DOI:10.1104/pp.108.126342
[46] [47]Tan H, Yang X, Zhang F, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds[J]. Plant Physiology, 2011, 156(3): 1577-1588. DOI:10.1104/pp.111.175000
[48]Baud S, Kelemen Z, Thévenin J, et al. Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by master transcriptional regulators in Arabidopsis seed[J]. Plant Physiology, 2016, 171(2): 1099-1112.
[49]Grimault A, Gendrot G, Chaignon S, et al. Role of B3 domain transcription factors of the AFL family in maize kernel filling[J]. Plant Science, 2015, 236: 116-125. DOI:10.1016/j.plantsci.2015.03.021
[50]Roscoe T, Guilleminot J, Bessoule J, et al. Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis[J]. Plant and Cell Physiology, 2015, 56(6): 1215-1228. DOI:10.1093/pcp/pcv049
[51]Fatihi A, Boulard C, Bouyer D, et al. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds[J]. Plant Science, 2016, 250: 198-204. DOI:10.1016/j.plantsci.2016.06.013
[52]Kagaya Y, Toyoshima R, Okuda R, et al. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3[J]. Plant and Cell Physiology, 2005, 46(3): 399-406. DOI:10.1093/pcp/pci048
[53]Boulard C, Fatihi A, Lepiniec L, et al. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits[J]. Elsevier, 2017, 1860(10): 1069-1078.
[54] [55]Kushwaha H, Jillo KW, Singh VK, et al. Assessment of genetic diversity among cereals and millets based on PCR amplification using Dof(DNA binding with One Finger)transcription factor gene-specific primers[J]. Plant Systematics and Evolution, 2015, 301(2): 833-840. DOI:10.1007/s00606-014-1095-8
[56]Gupta S, Pathak RK, Gupta SM, et al. Identification and molecular characterization of Dof transcription factor gene family preferentially expressed in developing spikes of Eleusine coracana L[J]. 3 Biotech, 2018, 8(2): 82. DOI:10.1007/s13205-017-1068-z
[57] [58]Zhang Y, Chen Y, Wang M, et al. Functional analysis of Dof transcription factors controlling heading date and PPDK gene expression in rice[D]. Leiden University Dissertation, 2015: 50-84. https://openaccess.leidenuniv.nl/handle/1887/37134
[59] [60]Jakoby M, Weisshaar B, Dröge-Laser W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3): 106-111.
[61] [62]Lara P, Oñate-Sánchez L, Abraham Z, et al. Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2[J]. Journal of Biological Chemistry, 2003, 278(23): 21003-21011. DOI:10.1074/jbc.M210538200
[63]Gacek K, Bartkowiak-Broda I, Batley J. Genetic and molecular regulation of Seed Storage Proteins(SSPs)to improve protein nutritional value of oilseed rape(Brassica napus L. )seeds[J]. Frontiers in Plant Science, 2018, 9: 890. DOI:10.3389/fpls.2018.00890
[64] [65]Rao G, Sui J, Zeng Y, et al. Genome-wide analysis of the AP2/ERF gene family inSalix arbutifolia[J]. FEBS Open Bio, 2015, 5(1): 132-137. DOI:10.1016/j.fob.2015.02.002
[66]Irish V. The ABC model of floral development[J]. Current Biology, 2017, 27(17): R887-R890. DOI:10.1016/j.cub.2017.03.045
[67]Wang C, Wang H, Zhang J, et al. A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination[J]. Science in China Series C: Life Sciences, 2008, 51(4): 336-345. DOI:10.1007/s11427-008-0044-6
[68]Jiang L, Ma X, Zhao S, et al. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size[J]. The Plant Cell, 2019, 31(1): 17-36.
[69]Ohto M, Fischer RL, Goldberg RB, et al. Control of seed mass by APETALA2[J]. Proceedings of the National Academy of Sciences, 2005, 102(8): 3123-3128. DOI:10.1073/pnas.0409858102
[70]Zhao L, Xu S, Chai T, et al. OsAP2-1, an AP2-like gene from Oryza sativa, is required for flower development and male fertility[J]. Sexual Plant Reproduction, 2006, 19(4): 197-206. DOI:10.1007/s00497-006-0036-2
[71]Ohto M, Floyd SK, Fischer RL, et al. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis[J]. Sexual Plant Reproduction, 2009, 22(4): 277-289. DOI:10.1007/s00497-009-0116-1
[72]Cernac A, Andre C, Hoffmann-Benning S, et al. WRI1 is required for seed germination and seedling establishment[J]. Plant Physiology, 2006, 141(2): 745-757. DOI:10.1104/pp.106.079574
[73]Penfield S, Li Y, Gilday AD, et al. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm[J]. The Plant Cell, 2006, 18(8): 1887-1899. DOI:10.1105/tpc.106.041277
[74]Lasserre E, Jobet E, Llauro C, et al. AtERF38(At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization[J]. Plant Physiology and Biochemistry, 2008, 46(12): 1051-1061. DOI:10.1016/j.plaphy.2008.07.003
[75] [76]Garcia D, Gerald J NF, Berger F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis[J]. The Plant Cell, 2005, 17(1): 52-60.
[77]Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. The Plant Cell, 2002, 14(6): 1359-1375. DOI:10.1105/tpc.001404
[78]Amato A, Cavallini E, Zenoni S, et al. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis[J]. Frontiers in Plant Science, 2017, 7: 1979.
[79] [80]Wang A, Garcia D, Zhang H, et al. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis[J]. Plant J, 2010, 63(4): 670-679. DOI:10.1111/j.1365-313X.2010.04271.x
[81]Zhou Y, Zhang X, Kang X, et al. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development[J]. The Plant Cell, 2009, 21(1): 106-117.
[82]Xiao YG, Sun QB, Kang XJ, et al. SHORT HYPOCOTYL UNDER BLUE1 or HAIKU2 mixepression alters canola and Arabidopsis seed development[J]. New Phytologist, 2016, 209(2): 636-649. DOI:10.1111/nph.13632
[83] [84]Anastasiou E, Kenz S, Gerstung M, et al. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling[J]. Developmental Cell, 2007, 13(6): 843-856. DOI:10.1016/j.devcel.2007.10.001
[85]Zhang Y, Du L, Xu R, et al. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana[J]. The Plant Cell, 2015, 27(3): 620-632. DOI:10.1105/tpc.114.135368
[86]Zhao B, Dai A, Wei H, et al. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean[J]. Plant Molecular Biology, 2016, 90(1-2): 33-47. DOI:10.1007/s11103-015-0392-0
[87]Adamski NM, Anastasiou E, Eriksson S, et al. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling[J]. Proceedings of the National Academy of Sciences, 2009, 106(47): 20115-20120. DOI:10.1073/pnas.0907024106
[88] [89] [90] [91]Ghanbari M, Packirisamy M, Geitmann A. Measuring the growth force of invasive plant cells using Flexure integrated Lab-on-a-Chip(FiLoC)[J]. Technology, 2018, 6(3-04): 101-109.
相关知识
Regulation of plant MYB transcription factors in anther development
Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses
The role of NAC transcription factors in flower development in plants
Progress on the mechanism of hormones regulating plant flower formation
花色素苷合成关键调节基因的研究进展
Research Progress of the Molecular Mechanisms of Light
Research progress in the mechanism of rhizosphere micro
Advances in research on floral meristem determinacy mechanisms in plants
Research progress on the effect of biological soil crust on seed germination and seedling establishment
植物种子休眠分子机制研究进展
网址: Research Progress on Transcription Factors Regulating Plant Seed Development https://m.huajiangbk.com/newsview1918579.html
上一篇: 红皮云杉及其近缘种良种选育、培育 |
下一篇: 一种靶向云杉花墨天牛嗅觉基因的d |