巩彪.氮信号调控番茄盐碱适应机理及SAMS和GSNOR基因的功能研究[D].泰安: 山东农业大学, 2014.
[3] [4] [5] [6]Tuteja N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology, 2007, 428: 419-438. DOI:10.1016/S0076-6879(07)28024-3
[7]Guo B, Wang Y, Sun X, et al. Bioactive natural products from endophytes: A review[J]. Applied Biochemistry and Microbiology, 2008, 44(2): 136-142. DOI:10.1134/S0003683808020026
[8] [9]Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont[J]. Ecology, 1988, 69(1): 2-9. DOI:10.2307/1943154
[10]Rodriguez RJ, White Jr JF, Arnold AE, et al. Fungal endophytes: diversity and functional roles[J]. New Phytologist, 2009, 182(2): 314-330. DOI:10.1111/j.1469-8137.2009.02773.x
[11]Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993, 260(5105): 214-216. DOI:10.1126/science.8097061
[12] [13] [14]Maciá-Vicente JG, Ferraro V, Burruano S, et al. Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient[J]. Microbial Ecology, 2012, 64(3): 668-679. DOI:10.1007/s00248-012-0066-2
[15] [16]Frank B. On the nutritional dependence of certain trees on root symbiosis with belowground fungi[J]. Mycorrhiza, 2005, 15(4): 267-275.
[17]Bach Allen E, Cunningham GL. Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels[J]. New Phytologist, 1983, 93(2): 227-236. DOI:10.1111/j.1469-8137.1983.tb03427.x
[18] [19]Trimble MR, Knowles NR. Influence of vesicular-arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber(Cucumis sativus L.)plants during establishment[J]. Canadian Journal of Plant Science, 1995, 75(1): 239-250. DOI:10.4141/cjps95-045
[20]李丽丽.旋覆花根围优势AM真菌对白花三叶草耐盐碱特性影响研究[D].哈尔滨: 东北林业大学, 2016.
[21] [22]Allen EB, Cunningham GL. Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels[J]. New Phytologist, 1983, 93(2): 227-236. DOI:10.1111/j.1469-8137.1983.tb03427.x
[23]Pfetffer CM, Bloss HE. Growth and nutrition of guayule(Parthenium argentatum)in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization[J]. New Phytologist, 1988, 108(3): 315-321. DOI:10.1111/j.1469-8137.1988.tb04168.x
[24]Ojala JC, Jarrell WM, Menge JA, et al. Influence of mycorrhizal fungi on the mineral nutrition and tield of onion in saline soil 1[J]. Agronomy Journal, 1983, 75(2): 255-259. DOI:10.2134/agronj1983.00021962007500020023x
[25]Poss JA, Pond E, Menge JA, et al. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate[J]. Plant and Soil, 1985, 88(3): 307-319. DOI:10.1007/BF02197488
[26]Duke ER, Johnson CR, Koch KE. Accumulation of phosphorus, dry matter and betaine during Nacl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves[J]. New Phytologist, 1986, 104(4): 583-590. DOI:10.1111/j.1469-8137.1986.tb00658.x
[27]Hartmond U, Schaesberg NV, Graham JH, et al. Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings[J]. Plant and Soil, 1987, 104(1): 37-43. DOI:10.1007/BF02370622
[28]Levy Y, Dodd J, Krikun J. Effect of irrigation, water salinity and rootstock on the vertical distribution of vesicular-arbuscular mycorrhiza in citrus roots[J]. New Phytologist, 1983, 95(3): 397-403. DOI:10.1111/j.1469-8137.1983.tb03507.x
[29]Rosendahl CN, Rosendahl S. Influence of vesicular-arbuscular mycorrhizal fungi(Glomus spp.)on the response of cucumber(Cucumis sativus L.)to salt stress[J]. Environmental and Experimental Botany, 1997, 31(3): 313-318. DOI:10.1016/0098-8472(91)90055-S
[30] [31]Verma S, Varma A, Rexer KH, et al. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus[J]. Mycologia, 1998, 90(5): 896-903. DOI:10.1080/00275514.1998.12026983
[32]Waller F, Achatz B, Baltruschat H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield[J]. Proceedings of the National Academy of Sciences of the USA, 2005, 102(38): 13386-13391. DOI:10.1073/pnas.0504423102
[33]惠非琼.印度梨形孢对烟草耐盐、抗旱及重金属作用及机理的初步研究[D].杭州: 浙江大学, 2014.
[34] [35] [36]Gallaud I. Etudes surles mycorrhizas endotrophes[J]. Review of General Botany, 1905, 17: 479-500.
[37]Melin E. On the mycorrhizas of Pinus silvestris L. and Picea abies Karst: a preliminary note[J]. Journal of Ecology, 1922, 9(2): 254-257. DOI:10.2307/2255406
[38] Jumpponen ARI, Trappe JM. Dark septate endophytes: A review
of facultative biotrophic root-colonizing fungi[J]. New Phytolo-gist, 1998, 140(2): 295-310. DOI:10.1046/j.1469-8137.1998.00265.x
Narisawa K, Hambleton S, Currah RS. Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae(Chaetothyriales)obtained from some forest soil samples in Canada using bait plants[J]. Mycoscience, 2007, 48(5): 274-281. DOI:10.1007/S10267-007-0364-6
[42]Wilson BJ, Addy HD, Tsuneda A, et al. Phialocephala sphaeroides sp. nov., a new species among the dark septate endophytes from a boreal wetland in Canada[J]. Canadian Journal of Botany, 2004, 82(5): 607-617. DOI:10.1139/b04-030
[43]Wagg C, Pautler M, Massicotte HB, et al. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae[J]. Mycorrhiza, 2008, 18(2): 103-110. DOI:10.1007/s00572-007-0157-y
[44]Pan X, Qin Y, Yuan Z. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity[J]. Symbiosis, 2018, 76(2): 109-116. DOI:10.1007/s13199-018-0541-8
[45]Redman RS, Kim YO, Woodward CJDA, et al. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change[J]. PLoS One, 2011, 6(7): e14823. DOI:10.1371/journal.pone.0014823
[46]缑小媛.内生真菌对醉马草耐盐性的影响研究[D].兰州: 兰州大学, 2007.
[47]王正凤.内生真菌对野大麦耐盐性影响的研究[D].兰州: 兰州大学, 2009.
[48]Mastouri F, Björkman T, Harman GE. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings[J]. Phytopathology, 2010, 100(11): 1213-1221. DOI:10.1094/PHYTO-03-10-0091
[49]Khan AL, Hamayun M, Ahmad N, et al. Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max L[J]. Journal of Microbiology and Biotechnology, 2011, 21(9): 893-902. DOI:10.4014/jmb.1103.03012
[50] [51] [52]陈亚平.耐盐碱植物内生真菌的分离鉴定及促进作物耐盐菌株的筛选[D].杭州: 浙江大学, 2014.
[53] [54] [55]Max X, Zheng J, Zhang X, et al. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus(Caryophyllaceae)by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system[J]. Frontiers in Plant Science, 2017, 8: 600. DOI:10.3389/fpls.2017.00600
[56]Keyster M, Klein A, Ludidi N. Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide[J]. Plant Signaling & Behavior, 2012, 7(3): 349-360.
[57]Pereira SIA, Moreira H, Argyras K, et al. Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganism[J]. Applied Soil Ecology, 2016, 105: 36-47. DOI:10.1016/j.apsoil.2016.03.015
[58]Hashem A, Abd-allah EF, Alqarawi AA, et al. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of acacia gerrardii under salt stress[J]. Frontiers in Microbiology, 2016, 7(1089): 1-2.
[59]Abdelaziz ME, Kim D, Ali S, et al. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions[J]. Plant Science, 2017, 263: 107-115. DOI:10.1016/j.plantsci.2017.07.006
[60]Adiku SGK, Renger M, Wessolek G, et al. Simulation of the dry matter production and seed yield of common beans under varying soil water and salinity conditions[J]. Agricultural Water Management, 2001, 47(1): 55-68. DOI:10.1016/S0378-3774(00)00094-9
[61] [62]Qin Y, Pan X, Kubicek C, et al. Diverse plant-associated pleosporalean fungi from saline areas: ecological tolerance and nitrogen-status dependent effects on plant growth[J]. Frontiers in Microbiology, 2017, 8: 158.
[63] [64]Hoekstra FA, Golovina EA, Buitink J. Mechanisms of plant desiccation tolerance[J]. Trends in Plant Sciences, 2001, 6(9): 431-438. DOI:10.1016/S1360-1385(01)02052-0
[65]Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review[J]. Annals of Botany, 2009, 104(7): 1263-1280. DOI:10.1093/aob/mcp251
[66]Jindal V, Atwal A, Sekhon BS, et al. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity[J]. Plant Physiology and Biochemistry, 1993, 3(1): 475-481.
[67] [68] [69] [70]Garg N, Bhandari P. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity[J]. Protoplasma, 2016, 253(5): 1325-1345. DOI:10.1007/s00709-015-0892-4
[71]Brugnoli E, Björkman O. Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy[J]. Planta, 1992, 187(3): 335-347.
[72]Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 551-560. DOI:10.1093/aob/mcn125
[73]Malinowski DP, Belesky DP. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance[J]. Crop Science, 2000, 40(4): 923-940. DOI:10.2135/cropsci2000.404923x
[74]Azad K, Kaminskyj S. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth[J]. Symbiosis, 2016, 68(1): 73-78.
[75]Ghorbani A, Razavi SM, Ghasemi VO, et al. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on the growth, gas exchange and chlorophyll fluorescence in tomato(Solanum lycopersicum L.)[J]. Plant Biology, 2018, 20(4): 729-736. DOI:10.1111/plb.12717
[76]Boo YC, Jung J. Water deficit-induced oxidative stress and antioxidative defenses in rice plants[J]. Journal of Plant Physiology, 1999, 155(2): 255-261. DOI:10.1016/S0176-1617(99)80016-9
[77]Sharma P, Dubey RS. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum[J]. Plant Cell Reports, 2007, 26(11): 2027-2038. DOI:10.1007/s00299-007-0416-6
[78]Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress[J]. Physiologia Plantarum, 2008, 133(3): 481-489. DOI:10.1111/j.1399-3054.2008.01090.x
[79]Pandey R, Garg N. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan(L.)Millsp. genotypes grown under salinity stress[J]. Mycorrhiza, 2017, 27(7): 669-682. DOI:10.1007/s00572-017-0778-8
[80] [81]Baltruschat H, Fodor J, Harrach BD, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants[J]. New Phytologist, 2008, 180(2): 501-510. DOI:10.1111/j.1469-8137.2008.02583.x
[82] [83] [84]Sirrenberg A, Göbel C, Grond S, et al. Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum, 2007, 131(4): 581-589. DOI:10.1111/j.1399-3054.2007.00983.x
[85]Ghaffari MR, Ghabooli M, Khatabi B, et al. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley[J]. Plant Molecular Biology, 2016, 90(6): 699-717. DOI:10.1007/s11103-016-0461-z
[86]Barazani O, von Dahl CC, Baldwin IT. Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling[J]. Plant Physiology, 2007, 144(2): 1223-1232. DOI:10.1104/pp.107.097543
[87]胡春霞.氮、磷和色氨酸对醉马草内生真菌共生体生长及麦角生物碱含量的影响[D].兰州: 兰州大学, 2013.
[88] [89]Sherameti I, Shahollari B, Venus Y, et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. Journal of Biological Chemistry, 2005, 280(28): 26241-26247. DOI:10.1074/jbc.M500447200
[90]Gasoni L. The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth[J]. Mycological Research, 1997, 101(7): 867-870. DOI:10.1017/S0953756296003462
[91]Bartholdy BA, Berreck M, Haselwandter K. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte[J]. Biometals, 2001, 14(1): 33-42. DOI:10.1023/A:1016687021803
[92]Malla R, Prasad R, Kumari R, et al. Phosphorus solubilizing symbiotic fungus: Piriformospora indica[J]. Endocytobiosis and Cell Research, 2004, 15(2): 579-600.
[93]Maccheron JW, Azevedo JL. Synthesis and secretion of phosphatases by endophytic isolates of Colletotrichum musae grown under conditions of nutritional starvation[J]. Journal of General and Applied Microbiology, 1998, 44(6): 381. DOI:10.2323/jgam.44.381
[94]Lévy J, Bres C, Geurts R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J]. Science, 2004, 303(5662): 1361-1364. DOI:10.1126/science.1093038
[95]Tanaka A, Christensen MJ, Takemoto D, et al. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction[J]. The Plant Cell, 2006, 18(4): 1052-1066. DOI:10.1105/tpc.105.039263
[96]Imaizumi-Anraku H, Takeda N, Charpentier M, et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots[J]. Nature, 2005, 433(7025): 527-531. DOI:10.1038/nature03237
[97]Saito K, Yoshikawa M, Yano K, et al. Nucleoporin85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus[J]. The Plant Cell, 2007, 19(2): 610-624. DOI:10.1105/tpc.106.046938
[98]Shahollari B, Vadassery J, Varma A, et al. A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana[J]. Plant J, 2007, 50(1): 1-13.
[99] [100] [101]Ouziad F, Wilde P, Schmelzer E, et al. Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress[J]. Environmental and Experimental Botany, 2006, 57(1): 177-186. DOI:10.1016/j.envexpbot.2005.05.011
[102]Aroca R, Porcel RJM, Ruiz-Lozano JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses[J]. New Phytologist, 2007, 173(4): 808-816. DOI:10.1111/j.1469-8137.2006.01961.x
[103] [104]Saikkonen K, Ion D, Gyllenberg M. The persistence of vertically transmitted fungi in grass metapopulations[J]. Proceedings of the Royal Society Biological Sciences of the USA, 2002, 269(1498): 1397-1403. DOI:10.1098/rspb.2002.2006
[105]Faeth SH, Gardner DR, Hayes CJ, et al. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte neotyphodium[J]. Journal of Chemical Ecology, 2006, 32(2): 307-324.
[106]Faeth SH, Sullivan TJ. Mutualistic asexual endophytes in native grass are usually parasitic[J]. The American Naturalist, 2003, 161(2): 310-325. DOI:10.1086/345937
[107]相关知识
Research Progress on Physiological Mechanism of Silicon on Enhancing Plant Drought Resistance
Research Progress on Response of Hemerocallis to Abiotic Stresses
Chemically Induced Mutants of Brassica oleracea var. botrytis Maintained Stable Resistance to Drought and Salt Stress after Regeneration and Micropropagation
Research progress in the mechanism of rhizosphere micro
Research Progress on Molecular Breeding of Resistance to Disease in Pepper
Research progress on remediation of pollutants in soil using plant
植物内生菌的生物防治作用研究进展 Advances in Biocontrol of Plant Endophytes
Enlightenment from microbiome research towards biocontrol of plant disease
Research progress on citrus canker disease and its microbial control
植物内生真菌防治根结线虫研究进展
网址: Research Progress on Endophytic Fungi Improving Plant Resistance to Salt Stress https://m.huajiangbk.com/newsview2406151.html
上一篇: 外生苗根真菌(P↓t)在松树育苗 |
下一篇: Interactions bet |