首页 > 分享 > siRNA药物在肿瘤靶向治疗中的研究进展

siRNA药物在肿瘤靶向治疗中的研究进展

摘要: 小干扰RNA(siRNA)是一种新型核酸药物,其通过RNA干扰(RNAi)机制,在转录后水平靶向沉默靶基因的表达,从而发挥治疗疾病的作用。siRNA作为一种精准、特异、高效的基因沉默疗法,在肿瘤靶向治疗领域备受瞩目。目前,已有多款抗肿瘤siRNA疗法进入临床试验阶段。综述了近年来siRNA在肿瘤靶向治疗中的研究进展,包括siRNA作用机制、抗肿瘤siRNA药物研发近况,以及siRNA药物体内递送的优化策略,旨在为抗肿瘤siRNA药物的研发与临床应用提供新思路。

Abstract: Small interfering RNA (siRNA) is a new type of nucleic acid drug that plays its therapeutic roles through the RNA interference (RNAi) mechanism to target and silence the expression of target genes at the post-transcriptional level. As a precise, specific and efficient gene silencing therapy, siRNA has attracted much attention in the field of tumor-targeted therapy. Currently, several anti-tumor siRNA therapies have entered the clinical trial stage. This article summarizes the research progress of siRNA in tumor-targeted therapy in recent years, including the mechanism of action for siRNA, the recent development of anti-tumor siRNA drugs, and the optimization strategies for the in vivo delivery of siRNA drugs, aiming to provide new insights for the development and clinical application of anti-tumor siRNA drugs.

[1]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263.

[2]

Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA:state of the art[J]. Signal Transduct Target Ther, 2020, 5(1):101. DOI:10.1038/s41392- 020-0207-x.

[3]

Cuciniello R, Filosa S, Crispi S. Novel approaches in cancer treatment:preclinical and clinical development of small non-coding RNA therapeutics[J]. J Exp Clin Cancer Res, 2021, 40(1):383. DOI: 0.1186/s13046-021-02193-1.

[4]

Zhang J, Chen B, Gan C, et al. A comprehensive review of small interfering RNAs (siRNAs):mechanism, therapeutic targets, and delivery strategies for cancer therapy[J]. Int J Nanomedicine, 2023, 18:7605-7635.

[5]

Kristensen L S, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3):188-206.

[6]

Goodall G J, Wickramasinghe V O. RNA in cancer[J]. Nat Rev Cancer, 2021, 21(1):22-36.

[7]

Al-Othman N, Alhendi A, Ihbaisha M, et al. Role of CD44 in breast cancer[J]. Breast Dis, 2020, 39(1):1-13.

[8]

Jain Singhai N, Ramteke S. CNTs mediated CD44 targeting; a paradigm shift in drug delivery for breast cancer[J]. Genes Dis, 2019, 7(2):205-216.

[9]

Dehbokri S G, Noorolyai S, Baghbani E, et al. Effects of CD44 siRNA on inhibition, survival, and apoptosis of breast cancer cell lines (MDA-MB-231 and 4T1)[J]. Mol Biol Rep, 2024, 51(1):646. DOI: 10.1007/s11033-024-09572-9.

[10]

Liu X, Zhang G, Yu T, et al. Exosomes deliver lncRNA DARSAS1 siRNA to inhibit chronic unpredictable mild stress-induced TNBC metastasis[J]. Cancer Lett, 2022, 543:215781. DOI: 10.1016/j.canlet.2022.215781.

[11]

Kong X, Xiong Y, Li L. LINC01605 promotes malignant phenotypes of cervical cancer via miR-149-3p/WNT7B axis[J]. Gene, 2024, 921:148518. DOI: 10.1016/j.gene.2024.148518.

[12]

Ha J H, Radhakrishnan R, Nadhan R, et al. Deciphering a GPCRlncRNA-miRNA nexus:identification of an aberrant therapeutic target in ovarian cancer[J]. Cancer Lett, 2024, 591:216891.DOI: 10.1016/j.canlet.2024.216891.

[13]

Chen S, Zhang Z, Zhang B, et al. CircCDK14 promotes tumor progression and resists ferroptosis in glioma by regulating PDGFRA[J]. Int J Biol Sci, 2022, 18(2):841-857.

[14]

Li B, Niu H, Zhao X, et al. Targeted anti-cancer therapy:codelivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) via cRGD-modified lipid nanoparticles for enhanced anti-angiogenic efficacy[J]. Asian J Pharm Sci, 2024, 19(2):100891. DOI: 10.1016/j.ajps.2024.100891.

[15]

Teng F, Zhang J X, Chang Q M, et al. LncRNA MYLK-AS1 facilitates tumor progression and angiogenesis by targeting miR- 424-5p/E2F7 axis and activating VEGFR-2 signaling pathway in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1):235. DOI: 10.1186/s13046-020-01739-z.

[16]

Xu Z, Guo C, Ye Q, et al. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization[J]. Nat Commun, 2021, 12(1):6310. DOI: 10.1038/s41467-021-26697-8.

[17]

Shamshiripour P, Rahnama M, Nikoobakht M, et al. Extracellular vesicles derived from dendritic cells loaded with VEGF-A siRNA and doxorubicin reduce glioma angiogenesis in vitro[J]. J Control Release, 2024, 369:128-145.

[18]

Jiang Y, Guo H, Tong T, et al. lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5[J]. Mol Ther, 2022, 30(1):448-467.

[19]

Azadi S S, Safaralizadeh R, Amini M, et al. Investigating the effect of LncRNA DLGAP1-AS2 suppression on chemosensitivity of gastric cancer to chemotherapy[J/OL]. Naunyn Schmiedebergs Arch Pharmacol, 2024[2024-06-05]. https://doi.org/10.1007/s00210-024-03130-7.

[20]

Xu J, Ji L, Liang Y, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1[J]. Signal Transduct Target Ther, 2020, 5(1):298. DOI: 10.1038/s41392-020-00375-5.

[21]

Meng X, Xiao W, Sun J, et al. CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer[J]. Cancer Lett, 2023, 554:216023. DOI: 10.1016/j.canlet.2022.216023.

[22]

Schmidt P J, Liu K, Visner G, et al. RNAi-mediated reduction of hepatic TMPRSS6 diminishes anemia and secondary iron overload in a splenectomized mouse model of β-thalassemia intermedia[J]. Am J Hematol, 2018, 93(6):745-750.

[23]

Vadolas J, Ng G Z, Kysenius K, et al. SLN124, a GalNac-siRNA targeting transmembrane serine protease 6, in combination with deferiprone therapy reduces ineffective erythropoiesis and hepatic iron-overload in a mouse model of β-thalassaemia[J]. Br J Haematol, 2021, 194(1):200-210.

[24]

Porter J B, Scrimgeour A, Martinez A, et al. SLN124, a GalNAc conjugated 19-mer siRNA targeting TMPRSS6, reduces plasma iron and increases hepcidin levels of healthy volunteers[J]. Am J Hematol, 2023, 98(9):1425-1435.

[25]

Li J, Tan S, Kooger R, et al. MicroRNAs as novel biological targets for detection and regulation[J]. Chem Soc Rev, 2014, 43(2):506-517.

[26]

Wang J, Tian T, Li X, et al. Noncoding RNAs emerging as drugs or drug targets:their chemical modification, bio-conjugation and intracellular regulation[J]. Molecules, 2022, 27(19):6717. DOI: 10.3390/molecules27196717.

[27]

Dong Y Z, Siegwart D J, Anderson D G. Strategies, design, and chemistry in siRNA delivery systems[J]. Adv Drug Deliv Rev, 2019, 144:133-147.

[28]

Endo S, Kubota S, Siomi H, et al. A region of basic amino-acid cluster in HIV-1 TAT protein is essential for trans-acting activity and nucleolar localization[J]. Virus Genes, 1989, 3(2):99-110.

[29]

Jing H, Cheng W, Li S, et al. Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative breast cancer therapy[J]. Colloids Surf B Biointerfaces, 2016, 146:387-395.

[30]

Song E W, Zhu P C, Lee S K, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors[J]. Nat Biotechnol, 2005, 23(6):709-717.

[31]

Kumar P, Ban H S, Kim S S, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice[J]. Cell, 2008, 134(4):577-586.

[32]

Yao Y D, Sun T M, Huang S Y, et al. Targeted delivery of PLK1- siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis[J]. Sci Transl Med, 2012, 4(130):130ra48. DOI: 10.1126/scitranslmed.3003601.

[33]

Wang X X, Xiao X, Feng Y, et al. A photoresponsive antibody-siRNA conjugate for activatable immunogene therapy of cancer[J]. Chem Sci, 2022, 13(18):5345-5352.

[34] 吕子阳, 任欢欢, 聂盛丹, 等. 核酸适配体靶向递送siRNA的设计策略及应用进展[J]. 中国药理学通报, 2022, 38(8):1141-1146. [35]

Wei J, Song R, Sabbagh A, et al. Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system[J]. Oncoimmunology, 2022, 11(1):2062827. DOI: 10.1080/2162402X.2022.2062827.

[36]

Camorani S, Tortorella S, Agnello L, et al. Aptamer-functionalized nanoparticles mediate PD-L1 siRNA delivery for effective gene silencing in triple-negative breast cancer cells[J]. Pharmaceutics, 2022, 14(10):2225. DOI: 10.3390/pharmaceutics14102225.

[37]

Yu Z L, Zhang X J, Pei X, et al. Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA[J]. Int J Pharm, 2021, 606:120940. DOI: 10.1016/j.ijpharm.2021.120940.

[38] 卢安, 王向宇, 闫仪, 等. 小干扰RNA的非病毒载体:从实验室走向临床[J]. 药学进展, 2022, 46(4):270-281. [39]

Kandasamy G, Maity D. Current advancements in self-assembling nanocarriers-based siRNA delivery for cancer therapy[J]. Colloids Surf B Biointerfaces, 2023, 221:113002. DOI:10.1016/j.colsurfb. 2022.113002.

[40]

Nsairat H, Khater D, Sayed U, et al. Liposomes:structure, composition, types, and clinical applications[J]. Heliyon, 2022, 8(5):e09394. DOI: 10.1016/j.heliyon.2022.e09394.

[41] 庄雅利, 高芸芬, 游欣如, 等. 功能性免疫调节纳米载体用于协同增强肿瘤免疫治疗的研究进展[J]. 药学进展, 2022, 46(9):658- 672. [42]

Dammes N, Goldsmith M, Ramishetti S, et al. Conformationsensitive targeting of lipid nanoparticles for RNA therapeutics[J]. Nat Nanotechnol, 2021, 16(9):1030-1038.

[43]

Saunders N R M, Paolini M S, Fenton O S, et al. A nanoprimer to improve the systemic delivery of siRNA and mRNA[J]. Nano Lett, 2020, 20(6):4264-4269.

[44]

Xue L, Hamilton A G, Zhao G, et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models[J]. Nat Commun, 2024, 15(1):1884. DOI: 10.1038/s41467-024-45422-9.

[45]

Chadar R, Afsana, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer[J]. Int J Pharm, 2021, 605:120835. DOI: 10.1016/j.ijpharm.2021.120835.

[46]

Darvishi M H, Allahverdi A, Hashemzadeh H, et al. Investigation of the ionic conditions in siRNA-mediated delivery through its carriers in the cell membrane:a molecular dynamic simulation[J]. Sci Rep, 2022, 12(1):17520. DOI: 10.1038/s41598-022-22509-1.

[47]

Ashrafizadeh M, Delfi M, Hashemi F, et al. Biomedical application of chitosan-based nanoscale delivery systems:potential usefulness in siRNA delivery for cancer therapy[J]. Carbohydr Polym, 2021, 260:117809. DOI: 10.1016/j.carbpol.2021.117809.

[48]

Huang X, Li J, Li G, et al. Cation-free siRNA-cored nanocapsules for tumor-targeted RNAi therapy[J]. Acta Biomater, 2023, 161:226-237.

[49]

Yang Y, Zhang X, Wu S, et al. Enhanced nose-to-brain delivery of siRNA using hyaluronan-enveloped nanomicelles for glioma therapy[J]. J Control Release, 2022, 342:66-80.

[50]

Gharavi A T, Irian S, Niknejad A, et al. Harnessing exosomes as a platform for drug delivery in breast cancer:a systematic review for in vivo and in vitro studies[J]. Mol Ther Oncol, 2024, 32(2):200800. DOI: 10.1016/j.omton.2024.200800.

[51]

Alvarez-Erviti L, Seow Y, Yin H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2011, 29(4):341-345.

[52]

Lu M, Xing H, Xun Z, et al. Exosome-based small RNA delivery:progress and prospects[J]. Asian J Pharm Sci, 2018, 13(1):1-11.

[53]

Felker J, Agnihotri S. Hurdling over the blood-brain barrier with exosome technology[J]. Neuro Oncol, 2022, 24(11):1884-1885.

[54]

Zhang W, Zhong W, Wang B, et al. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression[J]. Dev Cell, 2022, 57(3):329-343.

[55]

Xin L, Sansanaphongpricha K, Myers I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin, 2017, 38(6):754-763.

[56]

Liu X, Zhang G, Yu T, et al. CL4-modified exosomes deliver lncRNA DARS-AS1 siRNA to suppress triple-negative breast cancer progression and attenuate doxorubicin resistance by inhibiting autophagy[J]. Int J Biol Macromol, 2023, 250:126147. DOI: 10.1016/j.ijbiomac.2023.126147.

[57]

Han Q, Xie Q R, Li F, et al. Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer[J]. Theranostics, 2021, 11(13):6526-6541.

[58]

Han G, Kim H, Jang H, et al. Oral TNF-α siRNA delivery via milkderived exosomes for effective treatment of inflammatory bowel disease[J]. Bioact Mater, 2023, 34:138-149.

相关知识

抗血管内皮生长因子靶向药物联合免疫疗法治疗乳腺癌的研究进展
线粒体靶向抗氧化剂研究进展
个性化医疗时代的双生花:伴随诊断和靶向治疗药物
靶向治疗和免疫治疗可改善一种罕见恶性甲状腺癌的预后
免疫治疗是怎么治疗的
平邑县中医医院肿瘤治疗的新模式——低毒绿色治疗
治疗失眠的药物及其研究进展.doc
滕州市中心人民医院开展阿尔茨海默病靶向药物治疗
免疫细胞疗法大解密:类型、适用人群与肿瘤治疗的革新
药物遗传学概述

网址: siRNA药物在肿瘤靶向治疗中的研究进展 https://m.huajiangbk.com/newsview341229.html

所属分类:花卉
上一篇: 20分钟无痛治疗,创新疗法延缓老
下一篇: 新靶点!复旦大学王宾团队:发现神