首页 > 分享 > Progress and prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem

Progress and prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem

[1] [2]

Webb E L, Friess D A, Krauss K W, Cahoon D R, Guntenspergen G R, Phelps J. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change, 2013, 3(5): 458-465. DOI:10.1038/nclimate1756

[3]

Xu C Y, Pu L J, Zhu M, Li J G, Chen X J, Wang X H, Xie X F. Ecological security and ecosystem services in response to land use change in the coastal area of Jiangsu, China. Sustainability, 2016, 8(8): 816. DOI:10.3390/su8080816

[4]

Sun Z G, Sun W G, Tong C, Zeng C S, Yu X, Mou X J. China's coastal wetlands:conservation history, implementation efforts, existing issues and strategies for future improvement. Environment International, 2015, 79: 25-41. DOI:10.1016/j.envint.2015.02.017

[5] [6]

Harris J A. Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 2003, 54(4): 801-808. DOI:10.1046/j.1351-0754.2003.0559.x

[7]

Billings S A, Ziegler S E. Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Global Change Biology, 2005, 11(2): 203-212. DOI:10.1111/j.1365-2486.2005.00909.x

[8] [9] [10]

Tang Y S, Wang L, Jia J W, Fu X H, Le Y Q, Chen X Z, Sun Y. Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover. Soil Biology and Biochemistry, 2011, 43(3): 638-646. DOI:10.1016/j.soilbio.2010.11.035

[11]

Hu Y, Wang L, Tang Y S, Li Y L, Chen J H, Xi X F, Zhang Y N, Fu X H, Wu J H, Sun Y. Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary-Potential impacts on carbon sequestration. Soil Biology and Biochemistry, 2014, 70: 221-228. DOI:10.1016/j.soilbio.2013.12.025

[12]

Yin R, Deng H, Wang H L, Zhang B. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. Catena, 2014, 115: 96-103. DOI:10.1016/j.catena.2013.11.015

[13]

Stone M M, DeForest J L, Plante A F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biology and Biochemistry, 2014, 75: 237-247. DOI:10.1016/j.soilbio.2014.04.017

[14]

An J X, Liu C, Wang Q, Yao M J, Rui J P, Zhang S H, Li X Z. Soil bacterial community structure in Chinese wetlands. Geoderma, 2019, 337: 290-299. DOI:10.1016/j.geoderma.2018.09.035

[15]

Xi X F, Wang L, Hu J J, Tang Y S, Hu Y, Fu X H, Sun Y, Tsang Y F, Zhang Y N, Chen J H. Salinity influence on soil microbial respiration rate of wetland in the Yangtze River estuary through changing microbial community. Journal of Environmental Sciences, 2014, 26(12): 2562-2570. DOI:10.1016/j.jes.2014.07.016

[16]

Su Z G, Dai T J, Tang Y S, Tao Y L, Huang B, Mu Q L, Wen D H. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area. Marine Pollution Bulletin, 2018, 131: 481-495. DOI:10.1016/j.marpolbul.2018.04.052

[17]

Xu S Q, Wang Y D, Guo C C, Zhang Z G, Shang Y T, Chen Q, Wang Z L. Comparison of microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation. Wetlands, 2017, 37(1): 99-108. DOI:10.1007/s13157-016-0843-7

[18]

Zhong Q C, Wang K Y, Nie M, Zhang G L, Zhang W W, Zhu Y, Fu Y, Zhang Q, Gao Y N. Responses of wetland soil carbon and nutrient pools and microbial activities after 7 years of experimental warming in the Yangtze Estuary. Ecological Engineering, 2019, 136: 68-78. DOI:10.1016/j.ecoleng.2019.06.010

[19]

Cong M Y, Cao D, Sun J K, Shi F C. Soil microbial community structure evolution along halophyte succession in Bohai Bay Wetland. Journal of Chemistry, 2014, 2014: 491347.

[20] [21] [22] [23] [24]

Lv X F, Ma B, Yu J B, Chang S X, Xu J M, Li Y Z, Wang G M, Han G X, Bo G, Chu X J. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta. Scientific Reports, 2016, 6(1): 36550. DOI:10.1038/srep36550

[25] [26]

Chaudhary D R, Rathore A P, Kumar R, Jha B. Spatial and halophyte-associated microbial communities in intertidal coastal region of India. International Journal of Phytoremediation, 2017, 19(5): 478-489. DOI:10.1080/15226514.2016.1244168

[27]

Li X F, Hou L J, Liu M, Lin X B, Li Y, Li S W. Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands. Applied Microbiology and Biotechnology, 2014, 99(6): 2895-2909.

[28]

Zhang H X, Zheng S L, Ding J W, Wang O M, Liu F H. Spatial variation in bacterial community in natural wetland-river-sea ecosystems. Journal of Basic Microbiology, 2017, 57(6): 536-546. DOI:10.1002/jobm.201700041

[29]

Yang W, Jeelani N, Zhu Z H, Luo Y Q, Cheng X L, An S Q. Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands. Applied Soil Ecology, 2019, 135: 38-43. DOI:10.1016/j.apsoil.2018.11.009

[30]

Cheung M K, Wong C K, Chu K H, Kwan H S. Community structure, dynamics and interactions of bacteria, archaea and fungi in subtropical coastal wetland sediments. Scientific Reports, 2018, 8(1): 14397. DOI:10.1038/s41598-018-32529-5

[31]

Zhou Z C, Meng H, Liu Y, Gu J D, Li M. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Frontiers in Microbiology, 2017, 8: 2148. DOI:10.3389/fmicb.2017.02148

[32]

Hu Y, Wang L, Xi X F, Hu J J, Hou Y H, Le Y Q, Fu X H. Effects of salinity on soil bacterial and archaeal community in estuarine wetlands and its implications for carbon sequestration:verification in the Yellow River Delta. Chemistry and Ecology, 2016, 32(7): 669-683. DOI:10.1080/02757540.2016.1177519

[33]

Fierer N, Leff J W, Adams B J, Nielsen U N, Bates S T, Lauber C L, Owens S, Gilbert J A, Wall D H, Caporaso J G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21390-21395. DOI:10.1073/pnas.1215210110

[34]

Wang Y Y, Guo D F. Response of soil fungi community structure to salt vegetation succession in the Yellow River Delta. Current Microbiology, 2016, 73(4): 595-601. DOI:10.1007/s00284-016-1099-4

[35]

Yang W, Zhang D, Cai X W, Xia L, Luo Y Q, Cheng X L, An S Q. Significant alterations in soil fungal communities along a chronosequence of Spartina alterniflora invasion in a Chinese Yellow Sea coastal wetland. Science of the Total Environment, 2019, 693: 133548. DOI:10.1016/j.scitotenv.2019.07.354

[36]

鲁青原.辽河三角洲滨海湿地微生物群落组成及其环境意义[D].北京: 中国地质大学(北京), 2016.

[37]

Yu Y, Wang H, Liu J, Wang Q, Shen T L, Guo W H, Wang R Q. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. European Journal of Soil Biology, 2012, 49: 12-21. DOI:10.1016/j.ejsobi.2011.08.006

[38]

Liu M, Huang H Q, Bao S X, Tong Y H. Microbial community structure of soils in Bamenwan mangrove wetland. Scientific Reports, 2019, 9(1): 8406. DOI:10.1038/s41598-019-44788-x

[39]

Yang W, Jeelani N, Leng X, Cheng X L, An S Q. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China. Scientific Reports, 2016, 6(1): 26680. DOI:10.1038/srep26680

[40] [41] [42]

李艳, 高艳娜, 戚志伟, 姜楠, 仲启铖, 姜姗, 王开运, 张超. 滨海芦苇湿地土壤微生物数量对长期模拟增温的响应. 长江流域资源与环境, 2016, 25(11): 1738-1747. DOI:10.11870/cjlyzyyhj2016011013

[43]

Tripathi B M, Stegen J C, Kim M, Dong K, Adams J M, Lee Y K. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME Journal, 2018, 12(4): 1072-1083. DOI:10.1038/s41396-018-0082-4

[44] [45]

国春菲.土壤盐分和pH对滨海盐土土壤微生物多样性的影响[D].杭州: 浙江农林大学, 2013.

[46]

Yang J S, Zhan C, Li Y Z, Zhou D, Yu Y, Yu J B. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China. Science of the Total Environment, 2018, 642: 946-953. DOI:10.1016/j.scitotenv.2018.06.121

[47]

Van den Brand T P H, Roest K, Chen G H, Brdjanovic D, Van Loosdrecht M C M. Effects of chemical oxygen demand, nutrients and salinity on sulfate-reducing bacteria. Environmental Engineering Science, 2015, 32(10): 858-864. DOI:10.1089/ees.2014.0307

[48]

Guan B, Zhang H X, Wang X H, Yang S S, Chen M, Hou A X, Cagle G A, Han G X. Salt is a main factor shaping community composition of arbuscular mycorrhizal fungi along a vegetation successional series in the Yellow River Delta. Catena, 2020, 185: 104318. DOI:10.1016/j.catena.2019.104318

[49] [50]

Neori A, Agami M. The functioning of rhizosphere biota in wetlands-a review. Wetlands, 2017, 37(4): 615-633. DOI:10.1007/s13157-016-0757-4

[51]

Zhang N, Wang D D, Liu Y P, Li S Q, Shen Q R, Zhang R F. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil, 2014, 374(1/2): 689-700. DOI:10.1007/s11104-013-1915-6

[52]

Luo L, Wu R N, Gu J D, Zhang J, Deng S H, Zhang Y Z, Wang L L, He Y. Influence of mangrove roots on microbial abundance and ecoenzyme activity in sediments of a subtropical coastal mangrove ecosystem. International Biodeterioration & Biodegradation, 2018, 132: 10-17.

[53]

Moreno-Casasola P, Hernández M E, Campos C A. Hydrology, soil carbon sequestration and water retention along a coastal wetland gradient in the Alvarado Lagoon System, Veracruz, Mexico. Journal of Coastal Research, 2017, 77(sp1): 104-115.

[54] [55] [56]

Kraigher B, Stres B, Hacin J, Ausec L, Mahne I, van Elsas J D, Mandic-Mulec I. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh. Soil Biology and Biochemistry, 2006, 38(9): 2762-2771. DOI:10.1016/j.soilbio.2006.04.031

[57]

Unger I M, Kennedy A C, Muzika R M. Flooding effects on soil microbial communities. Applied Soil Ecology, 2009, 42(1): 1-8. DOI:10.1016/j.apsoil.2009.01.007

[58]

Chambers L G, Guevara R, Boyer J N, Troxler T G, Davis S E. Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands, 2016, 36(2): 361-371. DOI:10.1007/s13157-016-0745-8

[59]

Mueller P, Granse D, Nolte S, Do H T, Weingartner M, Hoth S, Jensen K. Top-down control of carbon sequestration:grazing affects microbial structure and function in salt marsh soils. Ecological Applications, 2017, 27(5): 1435-1450. DOI:10.1002/eap.1534

[60]

Zhang G L, Bai J H, Jia J, Wang W, Wang X, Zhao Q Q, Lu Q. Shifts of soil microbial community composition along a short-term invasion chronosequence of Spartina alterniflora in a Chinese estuary. Science of the Total Environment, 2019, 657: 222-233. DOI:10.1016/j.scitotenv.2018.12.061

[61] [62]

Yuan J J, Ding W X, Liu D Y, Kang H, Xiang J, Lin Y X. Shifts in methanogen community structure and function across a coastal marsh transect:effects of exotic Spartina alterniflora invasion. Scientific Reports, 2016, 6(1): 18777. DOI:10.1038/srep18777

[63]

Cui J, Chen X P, Nie M, Fang S B, Tang B P, Quan Z X, Li B, Fang C M. Effects of Spartina alterniflora invasion on the abundance, diversity, and community structure of sulfate reducing bacteria along a successional gradient of coastal salt marshes in China. Wetlands, 2017, 37(2): 221-232. DOI:10.1007/s13157-016-0860-6

[64] [65] [66] [67]

Vizza C, West W E, Jones S E, Hart J A, Lamberti G A. Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences, 2017, 14(2): 431-446. DOI:10.5194/bg-14-431-2017

[68] [69] [70]

Luo X S, Tang A H, Shi K, Wu L H, Li W Q, Shi W Q, Shi X K, Erisman J W, Zhang F S, Liu X J. Chinese coastal seas are facing heavy atmospheric nitrogen deposition. Environmental Research Letters, 2014, 9(9): 095007. DOI:10.1088/1748-9326/9/9/095007

[71]

Luo L, Meng H, Wu R N, Gu J D. Impact of nitrogen pollution/deposition on extracellular enzyme activity, microbial abundance and carbon storage in coastal mangrove sediment. Chemosphere, 2017, 177: 275-283. DOI:10.1016/j.chemosphere.2017.03.027

[72]

Liang C, Balser T C. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nature Communications, 2012, 3(1): 1222. DOI:10.1038/ncomms2224

[73]

Xie X F, Pu L J, Wang Q Q, Zhu M, Xu Y, Zhang M. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Science of the Total Environment, 2017, 607-608: 1419-1427. DOI:10.1016/j.scitotenv.2017.05.185

[74] [75]

Li J G, Pu L J, Zhu M, Zhang J, Li P, Dai X Q, Xu Y, Liu L L. Evolution of soil properties following reclamation in coastal areas:a review. Geoderma, 2014, 226-227: 130-139. DOI:10.1016/j.geoderma.2014.02.003

[76]

Cui X C, Hu J L, Wang J H, Yang J S, Lin X G. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Applied Soil Ecology, 2016, 98: 140-149. DOI:10.1016/j.apsoil.2015.10.008

[77]

仲启铖.温度和水位对滨海围垦湿地碳过程的影响[D].上海: 华东师范大学, 2014.

[78] [79]

Liu M L, Wang C, Wang F Y, Xie Y J. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Applied Soil Ecology, 2019, 142: 147-154. DOI:10.1016/j.apsoil.2019.04.024

[80]

Ullah S, Ai C, Ding W C, Jiang R, Zhao S C, Zhang J J, Zhou W, Hou Y P, He P. The response of soil fungal diversity and community composition to long-term fertilization. Applied Soil Ecology, 2019, 140: 35-41. DOI:10.1016/j.apsoil.2019.03.025

[81]

Islam M R, Chauhan P S, Kim Y, Kim M, Sa T. Community level functional diversity and enzyme activities in paddy soils under different long-term fertilizer management practices. Biology and Fertility of Soils, 2011, 47(5): 599-604. DOI:10.1007/s00374-010-0524-2

[82]

Pose-Juan E, Igual J M, Sánchez-Martín M J, Rodríguez-Cruz M S. Influence of herbicide triasulfuron on soil microbial community in an unamended soil and a soil amended with organic residues. Frontiers in Microbiology, 2017, 8: 378.

[83]

Rodríguez-Cruz M S, Pose-Juan E, Marín-Benito J M, Igual J M, Sánchez-Martín M J. Pethoxamid dissipation and microbial activity and structure in an agricultural soil:Effect of herbicide rate and organic residues. Applied Soil Ecology, 2019, 140: 135-143. DOI:10.1016/j.apsoil.2019.04.011

[84] [85]

Storck V, Nikolaki S, Perruchon C, Chabanis C, Sacchi A, Pertile G, Baguelin C, Karas P A, Spor A, Devers-Lamrani M, Papadopoulou E S, Sibourg O, Malandain C, Trevisan M, Ferrari F, Karpouzas D G, Tsiamis G, Martin-Laurent F. Lab to field assessment of the ecotoxicological impact of chlorpyrifos, isoproturon, or tebuconazole on the diversity and composition of the soil bacterial community. Frontiers in Microbiology, 2018, 9: 1412. DOI:10.3389/fmicb.2018.01412

[86]

Sheng Y Z, Wang G C, Hao C B, Xie Q, Zhang Q. Microbial community structures in petroleum contaminated soils at an oil field, Hebei, China. CLEAN-Soil, Air, Water, 2016, 44(7): 829-839. DOI:10.1002/clen.201500142

[87]

Long S C, Aelion C M, Dobbins D C, Pfaender F K. A comparison of microbial community characteristics among petroleum-contaminated and uncontaminated subsurface soil samples. Microbial Ecology, 2004, 30(3): 297-307.

[88]

Liang Y T, Van Nostrand J D, Deng Y, He Z L, Wu L Y, Zhang X, Li G H, Zhou J Z. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. The ISME Journal, 2011, 5(3): 403-413. DOI:10.1038/ismej.2010.142

[89]

Wang L, Huang X, Zheng T L. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing. Marine Pollution Bulletin, 2016, 109(1): 281-289. DOI:10.1016/j.marpolbul.2016.05.068

[90] [91]

She W W, Yao J, Wang F, Cai M M, Wang J W, Song C S. A combination method to study the effects of petroleum on soil microbial activity. Bulletin of Environmental Contamination and Toxicology, 2013, 90(1): 34-38. DOI:10.1007/s00128-012-0893-3

[92] [93]

孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛. 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 2012, 31(12): 1715-1723. DOI:10.11820/dlkxjz.2012.12.018

[94] [95]

相关知识

Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
互花米草入侵对滨海湿地生态系统的影响研究进展
Impacts of (micro) plastics on soil ecosystem: Progress and perspective
碳汇效应及其影响因素研究进展
植物功能性状与湿地生态系统土壤碳汇功能.pdf
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Effects of farmland management measures on soil organic carbon turnover and microorganisms
Research progress on the driving factors of freshwater lake ecosystem degradation and associated restoration techniques
长江中下游崩岸险情智能感知预警与防治关键技术研究构想与成果展望
甲烷排放部分抵消湿地生态系统碳汇功能:全球数据分析

网址: Progress and prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem https://m.huajiangbk.com/newsview437757.html

所属分类:花卉
上一篇: 云南林奇园艺有限公司简介
下一篇: 土壤微生物呼吸热适应性与微生物群