首页 > 分享 > Application Mechanism of Drip Irrigation Water Saving Technology and Hot Spot Research Progress

Application Mechanism of Drip Irrigation Water Saving Technology and Hot Spot Research Progress

0 引 言

据悉,农业旱灾高发区和极高发生区面积百分比分别占世界农业总面积约23.57%和27.19%[1]。农业生产的水资源不仅短缺,而且还存在很严重的浪费[2]。灌溉用水量的有效利用率很低,大部分耕地仍采用传统的地面灌溉方式[3]。农业用水量是增加粮食生产的关键因素,水资源的缺乏可直接影响植物的生理生化过程和形态结构,从而影响植物的正常生长发育、产量和品质的形成[4]。发展高效集约型的节水灌溉技术是世界持续发展灌溉农业的必要条件。

我国人均水资源量约为世界人均水资源的1/4,位于世界第109位,是世界上13个最缺水的国家之一,仅有0.4 万亿m3可用于农业生产,亩均水资源量1 770 m3,约为世界均值的2/3,全国70%的土地需要灌溉[5]。中国作为农业大国,将面临着更为严峻的水资源和粮食安全压力,因此提高水分生产力对于我国水资源的合理利用和粮食安全具有重要作用[6]。

为解决缺水问题,滴灌被认为是一种有效的节水技术,并已在多地区广泛应用于农作物种植[7]。随着现代智慧农业的发展,水肥一体化灌溉技术是当今世界上公认的提高水肥利用效率的最佳技术,滴灌水肥一体化技术可以提高作物的水肥利用效率[8],实现以水促肥,改善作物水分和养分的供应状况[9]。滴灌以点源或线源的方式进行局部性湿润灌溉,土壤水分含量随距离滴灌带水平方向和竖直方向的增加而减少[10],这将导致水分在水平方向不同行间的分布产生差异。滴灌系统下土壤水分分布的均匀性取决于滴灌带铺设的间距、滴灌频率、滴灌量、滴灌的水压以及出水方式[11]。此外滴灌系统土壤水分分布均匀性还受滴灌系统地形偏差、滴头制造偏差等因素的影响[12]。滴灌主要分为地表滴灌、膜下滴灌和地下滴灌,随着对节水和减少蒸发蒸腾的重视,地下滴灌越来越受欢迎[13]。

从20世纪70年代开始引入滴灌技术,到20世纪初开始快速发展,从2003年至2022年,滴灌面积增加了26倍,从26.7万hm2发展到698 万hm2,截止到2022年年底,我国微、滴灌面积达到698 万hm2[14-16]。东北四省区在“十三五”期间的节水增粮行动的推动下,微灌面积增长最为迅速,面积为98.8 万hm2,占全国微灌面积的21%[17]。

滴灌技术在促进农业水资源的高效利用、改善农业生产条件、提高农民收入、改善生态环境方面发挥了积极作用。在东北地区的节水增粮、华北地区的节水压采、西北地区的节水增效以及南方地区的节水减排等方面均具有积极意义。本文主要从滴灌技术适应的作物类型、滴灌技术研究的热点问题、节水节肥机理等3个方面对滴灌技术的发展现状、成效特点和存在问题进行了分析,并提出了滴灌技术未来发展的建议。

1 滴灌适应的作物类型

滴灌节水技术在我国发展这些年来,试验从大田作物到经济类作物都有应用。小麦常规灌溉不仅消耗大量的水,而且还具有较低的水分利用效率,而滴灌作为一种先进的节水灌溉技术,具有高达(75%~95%)的灌溉效率,远高于地表漫灌(25%~50%)、固定式喷灌(70%~80%)和移动式喷灌 (65%~75%)[18]。

玉米采用滴灌优化灌溉制度为,在生育期需灌水330 mm,并进行滴灌灌溉12次,可使西北干旱区玉米得到高产[19]。马铃薯采用滴灌技术可提升密植栽培密度,得到了黑龙江地区滴灌马铃薯适宜的密度为66 700 株/hm2的产量和水分利用效率最高[20]。棉花采用膜下滴灌比漫灌节省40%~50%的用水量,平均每公顷节省水3 000 m3左右,而省下水量又可以多提供50%的灌溉面积用水,灌溉保证率提高15%以上[21]。甜菜采用滴灌技术优化,研究表明随着滴灌次数的增加,甜菜LAI和产量增加,但对水分利用效率(WUE)和耗水量无明显影响,新疆膜下滴灌甜菜单次灌水量为60 mm 灌9次水,可获得高产较传统灌溉制度节水10%[22]。番茄采用滴灌技术,相较于沟灌,同等施氮水平下的滴灌可节水31%~37%,增产3.7%~12.5%,且滴灌处理下15~30 cm层土壤含水率明显高于沟灌,有效减小了硝态氮淋溶,使番茄根部土壤更适于番茄生长[23]。葡萄采用滴灌模式研究表明,滴灌条件下一行两管布置、滴头流量1 L/h,滴头间距50 cm,灌水定额2 700 m3/hm2,灌水周期7 d,大田葡萄灌水效果最好[24]。滴灌技术还应用到黄瓜[25]、茄子[26]、甜瓜[27]、油葵[28]、芒果树[29]、秋茶[30]等。虽然滴灌技术最常用于园艺作物,但滴灌技术现在已适用于许多种作物,包括棉花、玉米和小麦等。

2 滴灌节水技术应用研究热点

滴灌技术的优势在于具有无输水损失、无地面径流损失、深层渗漏损失小、田间蒸发损失低的特点[31]。因此,水分利用率非常高。通过在原有滴灌设备上增加供肥设施,降低肥料农药施用量,提高作物产量与品质。滴灌直接将输水管道埋于地下或放置于植物根部,一次施工多年收益,不需要年年大量投入劳力,不需要开挖沟渠占用大量土地,提高经济效益。因而国内外众多学者对滴灌技术展开了研究。

在滴灌与其他灌水方式的优势比较研究方面,徐杰等[32]的研究表明,在东北吉林地区,滴灌处理与雨养条件及大水漫灌处理相比,明显提高了玉米的产量。此外,滴灌施氮肥处理在高密度下不仅提高了东北玉米的产量,还提高了水氮利用效率。Fanish等[33]研究发现,与玉米沟灌相比,滴灌方式分别使玉米的产量提高了35%和水分利用效率提高了9.52%。

在滴灌水肥一体化研究方面,邓兰生等[34]通过比较滴灌施肥灌溉和滴灌撒施化肥试验发现,滴灌施肥灌溉明显提高了氮肥利用率,提高幅度为8.75%~21.5%。这对玉米的氮肥吸收利用有利,并增加了生物量积累。Hongal等[35]的研究还发现,与常规施肥相比,滴灌施肥可以降低15%~25%的肥料用量。而苑喜军等[36]研究发现,在东北吉林地区采用滴灌水、肥一体化施肥模式时,氮、磷、钾的肥料利用率分别大大提高至52.3%、29.7%、46.7%,相比于常规施肥情况下的25.6%、18.5%、36.0%。因此,在滴灌养分管理中,水分与养分的耦合、肥料的种类(如水溶肥)以及施肥方法(施肥次数、基肥与追肥比例)同样对作物的产量和养分利用有重要影响。

在滴灌对作物产量、地力提升以及水分利用效率等研究方面,王允喜等[37]研究表明,高产值的经济作物以及干旱区和沙质土地上的作物应该使用较小的滴灌带间距,湿润地区和半湿润地区的作物则应该使用较大的间距。窦超银等[38]表明,与传统的漫灌相比,滴灌显著提高了产量和水分利用效率(WUE)。平地和坡耕地的作物产量分别增加了15.6%和11.1%,WUE分别提高了55.9%和49.8%。吕殿青等[39]利用膜下滴灌技术进行种植的研究表明,通过滴灌措施,土壤盐分在根区域的积累得到减少,根区域变得更加淡化,为作物正常生长创造了良好的环境。与常规灌溉技术相比,膜下滴灌能明显地滤洗土壤盐分,并且因为减少了蒸发,能够有效抑制和减缓表层土壤的盐分返还过程。谭军利等[40]的覆膜滴灌试验发现,随着种植年限的增加,0~40 cm土壤的盐分和离子含量都有所降低。李毅杰等[41]研究表明,滴灌大棚甜瓜的株高、叶面积和干物质质量与营养生长期土壤水分下限呈正相关。王振华等[42]研究结果表明,在新疆种植小麦采用滴灌是可行的,滴灌小麦在土壤20~40 cm的层次上消耗的水量最大;通过试验得出,滴灌小麦在定额灌溉量为3 500 m3/hm2时,产量可达7 681.2 kg/hm2。

在加气滴灌研究方面,加气滴灌技术是在滴灌技术的基础上,通过向水中添加气体,使水中的氧气含量增加,从而提高作物对水分和养分的吸收效率。目前,加气滴灌技术已经在一些国家和地区得到了应用,例如以色列、美国、澳大利亚等。在我国,加气滴灌技术的研究起步较晚,但近年来已经取得了一定的进展。研究主要集中在加气滴灌的原理和设备[43]、加气滴灌对作物生长和水分利用效率的影响[44]、加气滴灌的优化[45]等方面。加气滴灌可提高根区土壤含氧量及作物产量,降低滴灌管道和滴头堵塞风险。

目前多集中在不同的灌水方式[46]、灌水次数[47]及不同灌水量[48]对土壤含水量造成影响,进而影响作物的生物量、生理生化、产量及土壤微生物。

3 滴灌节水节肥机理

3.1 根系的吸收补偿能力

滴灌技术作为一项重要的农艺措施改进,对植株根系正常的生长发育影响非常显著。膜下滴灌技术使 90% 以上的棉花根系集中在耕作层,有效降低根冠比,打破“高产需要庞大根系来支撑”的传统观念[49]。水分亏缺可促进作物根系生长、提高根冠比[50]、增加根密度、促进根毛生长发育。

William等[51]研究表明水分胁迫条件下,随土壤含水率下降,根系总生物量明显降低。孙华银等[52]研究表明,在一定的范围内适宜的土壤含水量可促进植株根系的生长和发育。水分亏缺或水分供应超出根系正常生长所需的限度都会对植株根系数量、分布及生理活性产生影响,导致植株根系生长异常,进而影响地上部的生长发育。Antolin等[53]研究表明,滴灌条件下部分发育期亏缺灌溉可以促进根系下扎,提高植株水分利用效率,葡萄糖酸比和风味物质改善,葡萄品质提高。张计峰等[54]研究发现,根区孔下滴灌较地表滴灌显著增加根系干重,提高枣树器官NPK含量,增加产量和肥料利用效率。魏国良等[55]研究了自然条件下和滴灌条件下梨枣根系的分布特征,结果显示滴灌有利于增加梨枣的吸收根,有助于提高根系吸收水肥能力,但滴灌方式明显地限制了梨枣树部分区域吸收根系的生长和分布。邓兰生等[34]研究发现,滴灌施氮肥比常规灌水施氮显著增加了玉米根系(吸收根)的根长和根表面积,一级根的数量增加20%,二级根的根表面积增加15%,节水40%,节肥30%。

3.2 保持光合速率,降低蒸腾速率

滴灌可以显著降低作物蒸腾速率,而光合速率变化很小。植物的蒸腾速率和气孔导度为线性关系,而气孔导度和光合速率趋向饱和,适当减小气孔导度,可显著降低作物蒸腾耗水,同时对光合作用没有影响或影响很小[56]。孙华银等[52]研究发现,占田间持水量60%的灌水下限处理甜椒叶片光合速率最大,水分利用效率最高,占田间持水量70%的灌水下限处理产量达到最高;30 cm内当灌水下限为田间持水量的70%左右时;甜椒产量可达最大值。王冀川等[57]研究发现,与漫灌相比,滴灌能提高玉米群体的光截获率,降低冠层温度和表层土壤温度,生育期推迟5 d左右,产量提高14.95%。张效星等[58]研究表明与充分灌溉相比,柑橘果实膨大期轻度水分亏缺导致Gs 显著下降,Pn 无显著影响;果实成熟期轻度水分亏缺的Tr 显著降低。李建明等[59]将膜下滴灌技术应用在番茄上,田间试验中发现:光合速率和灌水量存在二次抛物线关系,在灌水量临界点之前随灌水量的增加而加快,临界点之后反而随灌水量增加减慢。李维敏等[60]研究发现,滴灌条件下,玉米叶片叶绿素、蒸腾速率和光合速率等光合特性指标在苗期至吐丝期呈上升趋势。

3.3 降低土壤蒸发,减少深层渗漏

减少棵间蒸发是滴灌节水的一条有效途径。在水分亏缺期间,下层土壤水分只能以水蒸气的形式经过土壤干层向空气中蒸散,水汽通量很小,土壤水蒸发量大大减少[61]。Hebbar等[62]研究发现,滴灌与沟灌相比,西红柿的干物质量和叶面积指数更高,产量提高19.9%,且有利于作物的氮磷钾元素的吸收,降低了土壤硝态氮的淋失量。吕谋超等[63]研究发现,滴灌灌水直接精确地用于作物的根区,使作物始终处在较优的土壤水分条件下,可以避免其他灌水方式产生的周期性水分过多和水分亏缺的情况,并能有效地减少蒸发、径流和深层渗漏的水量损失,通过土壤水分调控来影响作物能量的协调、平衡关系,达到最优根冠比,增加作物产量提高水分利用效率。张建新等[64]利用滴灌盆栽试验研究了棉花蕾期和花铃期不同施氮量对棉花内源激素(ABA)和田间持水量的关系,结果表明随施氮量能够提高棉花的ABA和田间持水量,同时ABA表层土壤的田间持水率呈现对数关系。何华等[65]研究发现,与滴灌相比,地下滴灌溉技术不仅具有滴灌方面水分、养分吸收利用的优势,尤其在抑制氮素的挥发损失和减少土壤水分的蒸发损失方面更具有强势;地下滴灌所灌施的NO3 --N在滴头周围形成高浓度区域。

4 存在问题

前人对华北和西北干旱地区等地域滴灌制度进行了大量的研究[66-68],但多为定量灌溉或以灌溉频次为参数[69],未考虑适宜作物生长的最优土壤水分供应条件。滴灌施肥技术作为先进的现代农业施肥管理技术,可以提高粮食产量、肥料及水分生产力,然而滴灌的效果会受到如气候条件、土壤类型、作物种类、田间养分水分管理等因素影响。因此,针对不同的作物、土壤类型、气候条件下开展滴灌施肥技术的研究,掌握作物的养分水分吸收利用规律,以优化滴灌施肥的田间水分、养分管理方案,并提升作物产量及养分水分利用效率具有重要意义。

不同滴灌水肥供应模式下,对作物的生长发育调节方面已经做了一些研究[70-72]。但大多数试验都是考虑灌水方法、灌水水平和施肥因素等对作物生长、产量和节水效益等方面的试验研究[73, 74],针对整个生育期水分调控和氮磷钾配施相结合,研究作物的生长发育、生理指标、作物养分吸收利用、内源激素的影响和水肥利用高效率等方面的研究还比较少[75]。待进一步研究滴灌施肥作物水肥耦合效应机制研究,进行机理性的研究才能解释作物的需水需肥规律以及作物-灌溉-施肥-养分吸收之间的相关关系。

虽然滴灌条件下土壤水盐运移等方面的研究[76-78]已有许多,但大多集中在室内土柱试验或土壤质地及外界环境变化较小的试验条件或盆栽试验,且大部分为充分灌水施肥试验,缺少亏缺灌溉条件下农田水分运动及盐分离子演变研究。

经济节能型滴灌技术系统研究[79]在理论和技术等方面还没有彻底解决,尤其是压力对系统灌溉质量、水力学性能的影响,保证灌溉质量、降低系统成本的技术途径还不是十分完善,灌溉均匀度以及灌溉质量评价等方面的研究也还有待于进一步深入等,为此需要进行微压滴灌技术理论基础研究。研究微压条件下滴灌系统压力、流量分配规律,确定微压滴灌技术系统构成方法,提出系统技术性能参数和要求,并研究提出滴灌系统压力降低带来一系列问题的解决办法;研制微压滴灌技术规程和技术标准。

精准灌溉领域,20世纪80年代90年代初,同样是从国外引进节水灌溉设备与技术后,经过了随后20多年的发展,以实现了从墒情监测到信息传输,再到灌溉决策,最后通过电磁阀实现精准灌溉的整套精准灌溉技术体系。滴灌施肥技术作为一项随水追肥技术,自滴灌技术被引入国内后一直配套使用,但经过20多年的发展没有得到有效的技术提升与改进。使得大田各项精准技术中滴灌施肥设备技术革新远远落后于其他精准技术操控载体。目前在大田环境下还没有实现信息化与自动化,在精准农业各项技术中处于落后状态。所以滴灌精准施肥技术执行载体就成了该环节的一个短板,并将会影响整套精准技术集成发展。滴灌施肥装置作为滴灌精准施肥的技术操作载体必须得到有效的技术改造与革新,才能适应新形势下农业现代化的发展。

5 展 望

从整体上分析,我国滴灌施肥系统管理水平较低,而且大量的研究成果多集中在对作物养分与土壤养分的监测、施肥量与产量及土壤养分分布情况、水肥一体化管理等方面的研究。然而在精准追肥环节,大田滴灌施肥装备领域,至今没有很好的技术方案来解决当前滴灌施肥环节所出现的各类技术难题。

国内外学者通过试验研究,分析了不同灌溉方式或不同灌溉施肥水平下植株根区土壤水分和养分的迁移和时空分布规律。目前仍缺乏在滴灌施肥条件下,作物对于水肥的响应过程,以及作物根区养分吸收利用机制的全面研究,综合分析其影响因素,才能揭示滴灌施肥水肥吸收利用机制,并提出同步提高水肥耦合利用的有效措施。

虽然滴灌技术是环境友好型灌溉技术,但它的应用还是能够引起田间微环境的变化,对土壤、作物、水微循环产生影响,但他们的影响规律和过程均还有待于进一步认知。因此,今后需要加强对滴灌技术对土壤微环境的影响。研究不同滴灌灌水量和灌溉深度对不同种植模式下土壤水分、养分、盐分的分布规律,尤其是地下滴灌对土壤水分运移分布规律的影响和滴灌灌水施肥以及滴灌设备老化残留对土壤微生物群落结构的影响;提高滴灌技术对不同作物水分利用效率和滴灌过程中不同作物需求的最佳滴灌量和灌溉深度,分析不同作物在滴灌方式下的水分利用效率及变化规律,提出合理滴灌制度。研究滴灌技术对田间小气候的影响,提出解决我国大田滴灌引起的盐碱化问题,研究滴灌设备残留物对环境的影响以及滴灌系统残留物对土壤结构的影响,残留物分解后有害物质对土壤及空气的影响等。研究污水滴灌对环境的影响,尤其是有害元素在土壤和作物种子中的富集规律等,提出不同滴灌制度的施肥量、方式以及时间。

总体而言,国内的研究多集于作物的生长和产量对滴灌施肥技术反应机制方面,而对于滴灌施肥滴头流量、溶液浓度和施肥持续时间等不同条件下水分、养分在作物根区的运动及分布模式的研究较少,使得滴灌施肥制度设计和系统运行仍缺乏较为准确的数据。而且滴灌施肥条件下作物对养分的利用以及对产量的影响,水分和溶质分布运移规律也有待进一步研究,养分吸收特性及养分吸收机理模型方面同样缺乏系统研究,也是亟需解决的问题。与此同时,滴灌条件下作物不同生育期养分需求比例、需求量和施肥方法等养分需求特性还不是很清楚,作物滴灌施肥同样缺乏科学依据,实际生产运用中盲目性较大,这些问题也是制约滴灌施肥技术快速推广与深化的重要原因。滴灌施肥条件下土壤、水分、养分和作物、土壤微生物间关系的相互作用机理也是人们容易忽视的问题,这方面应该加强滴灌施肥对作物根系分布及根系易收养分特性,土壤微生物影响特性、不同气候、土壤条件、不同作物适宜的滴灌施肥技术等方面的研究,其中包括适宜的肥料种类、比例、浓度、施入时期和频率等。滴灌施肥智能化以及智慧化有待深入展开研究。

{{custom_citation.annotation}3}

=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citation.annotation}2}{{custom_citation.annotation}1}1 GENG G P

,

WU J J

,

WANG Q F

, et al. Agricultural drought hazard analysis during 1980-2008: a global perspective[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2016, 36(1): 389-399.

{{custom_citation.annotation}0}https://doi.org/{{custom_ref.label}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.label}6}{{custom_ref.label}4}本文引用 [{{custom_citation.content}9}]摘要{{custom_citation.content}8}2 DENG X P

, LUN S,

ZHANG H

, et al. Improving agricultural water use efficiency in arid and semiarid areas of China[J]. Agricultural Water Management, 2006, 80(1-3): 23-40.

{{custom_citation.content}7}https://doi.org/{{custom_citation.content}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}3}{{custom_citation.content}1}本文引用 [{{custom_citation.doi}6}]摘要{{custom_citation.doi}5}3 THOMAS A

. Agricultural irrigation demand under present and future climate scenarios in China[J]. Global and Planetary Change, 2008, 60(3-4): 306-326.

{{custom_citation.doi}4}https://doi.org/{{custom_citation.doi}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}0}{{custom_citation.doi}8}本文引用 [{{custom_citation.doi}3}]摘要{{custom_citation.doi}2}4 ZHANG Y

,

KENDY E

,

QIANG Y

, et al. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain[J]. Agricultural Water Management, 2004, 64: 107-122.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.pmid}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}7}{{custom_citation.pmid}5}本文引用 [{{custom_citation.pmid}0}]摘要{{custom_citation.pmid}9}5 KANG S

,

HAO X

,

DU T

, et al. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice[J].Agricultural Water Management, 2017, 179: 5-17.

{{custom_citation.pmid}8}https://doi.org/{{custom_citation.pmid}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}4}{{custom_citation.pmid}2}本文引用 [{{custom_citation.url}7}]摘要{{custom_citation.url}6}6

孙世坤, 王玉宝, 刘静, 等. 中国主要粮食作物的生产水足迹量化及评价[J]. 水利学报, 2016, 47(9): 1 115-1 124.

SUN S K

,

WANG S B

,

LIU J

, et al. Quantification and evaluation of production water footprint of major grain crops in China[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1 115-1 124.

{{custom_citation.url}5}https://doi.org/{{custom_citation.url}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}1}{{custom_citation.url}9}本文引用 [{{custom_citation.url}4}]摘要{{custom_citation.url}3}7 ZHOU C

,

ZHANG H

,

LI F

, et al. Deficit mulched drip irrigation improved yield and quality while reduced water consumption of isatis indigotica in a cold and arid environment[J]. Front Plant Science, 2022, 13: 1 013 131.

{{custom_citation.url}2}https://doi.org/{{custom_citation.url}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}8}{{custom_ref.citedCount>0}6}本文引用 [{{custom_ref.citedCount>0}1}]摘要{{custom_ref.citedCount>0}0}8 YAN S

,

WU Y

,

FAN J

, et al. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat[J]. Agricultural Water Management, 2019, 213: 983-995.

{{custom_citationIndex}9}https://doi.org/{{custom_citationIndex}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}5}{{custom_citationIndex}3}本文引用 [{{custom_ref.citationList}8}]摘要{{custom_ref.citationList}7}9 YAN S

,

WU Y

,

FAN J

, et al. Dynamic change and accumulation of grain macronutrient (N, P and K) concentrations in winter wheat under different drip fertigation regimes[J]. Field Crops Research, 2020, 250: 107 767.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}2}{{custom_ref.citationList}0}本文引用 [{{custom_ref.id}5}]摘要{{custom_ref.id}4}10 DU T

,

KANG S

,

ZHANG J

, et al. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China[J]. Irrigation Science, 2008, 26(2): 147-159.

{{custom_ref.id}3}https://doi.org/{{custom_ref.id}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}9}{{custom_ref.citedCount}7}本文引用 [{{custom_ref.citedCount}2}]摘要{{custom_ref.citedCount}1}11 PENG Y

,

GU X

,

ZHOU Q

, et al. Molecular and physiologic mechanisms of advanced ripening by trunk girdling at early veraison of 'Summer Black' grape[J]. Front Plant Science, 2022, 13: 1 012 741.

{{custom_ref.citedCount}0}https://doi.org/{{custom_citation.annotation}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}6}{{custom_citation.annotation}4}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}12 IHSAN MZ

,

EL-NAKHLAWY FS

,

ISMAIL SM

, et al. Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment[J]. Front Plant Science, 2016, 7: 795.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}13 CHANDRASEKARAN S

,

JIANG S C

. A dynamic transport model for quantification of norovirus internalization in lettuce from irrigation water and associated health risk[J]. Science Total Environment, 2018, 643: 751-761.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}14 LAMM F R

. Cotton, tomato, corn, and onion production with subsurface drip irrigation: A review[J]. Transactions of the ASABE, 2016, 59(1): 263-278.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}15

姚振宪.我国滴灌创新发展综述[J]. 农业工程, 2022, 12(1): 75-78.

YAO Z X

. Summary of innovation and development of drip irrigation in China [J]. Agricultural Engineering, 2022, 12(1): 75-78.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}16

王振华,陈学庚,郑旭荣,等.关于我国大田滴灌未来发展的思考[J].干旱地区农业研究,2020,38(4): 1-9, 38.

WHANG Z H

,

CHEN X G

,

ZHENG X R

, et al. Discussion of the future development of field drip irrigation in China [J]. Agricultural Research in the Arid Areas, 2020, 38(4): 1-9, 38.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}17

顾涛, 李兆增, 吴玉芹. 我国微灌发展现状及“十三五”发展展望[J]. 节水灌溉, 2017(3): 90-96.

GU T

,

LI Z Z

,

WU Y Q

. China's micro-irrigation development status and "13th Five-Year" development outlook[J]. Water Saving Irrigation, 2017(3): 90-96.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}18 CHEN R

,

CHENG W

,

CUI J

, et al. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency[J]. Field Crops Research, 2015, 179: 52-62.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}19

赵自明. 西北干旱缺水区大田作物滴灌灌溉制度试验[J]. 武汉大学学报(工学版), 2006, 39(4): 9-13.

ZHAO Z M

. Experiment on drip irrigation system for field crops in arid and water-scarce area of Northwest China[J]. Engineering Journal of Wuhan University, 2006, 39(4): 9-13.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}20

王岩, 刘畅, 李云开, 等. 种植密度对滴灌马铃薯生长、产量的影响[J]. 排灌机械工程学报, 2020, 38(1): 90-94.

WANG Y

,

LIU C

,

LI Y K

, et al. Effect of planting density on growth and yield of drip-irrigated potatoes[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(1): 90-94.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}21

顾烈烽. 新疆生产建设兵团棉花膜下滴灌技术的形成与发展[J]. 节水灌溉, 2003(1): 27-29.

GU L F

. Formation and development of cotton sub-membrane drip irrigation technology in Xinjiang production and construction corps[J]. Water Saving Irrigation, 2003(1): 27-29.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}22

王振华, 杨彬林, 谢香文, 等. 灌溉制度对膜下滴灌甜菜产量及水分利用效率的影响[J]. 农业工程学报, 2019, 35(8): 158-166.

WANG Z H

,

YANG B L

,

XIE X W

, et al. Effect of different irrigation regimes of drip irrigation under plastic film on sugar beet yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 158-166.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}23 SINGANDHUPE R B

,

RAO G

,

PATIL N G

, et al. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersiconesculentum L.)[J]. European Journal of Agronomy, 2003, 19(2):327-340.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}24

牛小霞, 马忠明, 陈娟, 等. 灌溉量和滴灌方式对酿酒葡萄品质的影响及综合评价[J].节水灌溉, 2023(8): 136-142.

NIU X X

,

MA Z M

,

CHEN J

, et al. Effects of different irrigation amount and drip irrigation modes on wine grape fruit quality and comprehensive evaluation[J]. Water Saving Irrigation, 2023(8): 136-142.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}25

方栋平, 吴立峰, 张富仓, 等. 灌水量和滴灌施肥方式对温室黄瓜产量和养分吸收的影响[J]. 灌溉排水学报, 2016, 35(11): 34.

FANG D P

,

WU L F

,

ZHANG F C

, et al. Effect of irrigation volume and drip irrigation application method on yield and nutrient uptake of cucumbers in greenhouse[J]. Journal of Irrigation and Drainage, 2016, 35(11): 34.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}26

范海燕, 马福生, 吴文勇,等. 设施茄子滴灌土壤水分运动数值模拟及验证分析[J]. 中国农村水利水电, 2014(4): 7-10.

FAN H Y

,

MA F S

,

WU W Y

, et al. A numerical simulation and validation analysis of soil moisture movement for protected eggplant under drip irrigation[J]. China Rural Water and Hydropower, 2014(4): 7-10.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}27

杜少平, 马忠明, 薛亮. 适宜施氮量提高温室砂田滴灌甜瓜产量品质及水氮利用率[J]. 农业工程学报, 2016,32(5): 112-119.

DU S P

,

MA Z M

,

XUE L

. Optimal drip fertigation amount improving muskmelon yield, quality and water and nitrogen in plastic greenhouse of gravel-mulched field[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(5): 112-119.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}28

杨宏羽, 李欣, 王波,等. 膜下滴灌油葵土壤水热高效利用及高产效应[J]. 农业工程学报, 2016, 32(8): 82-88.

YANG H Y

,

LI X

,

WANG B

, et al. Effect of drip irrigation under plastic film on soil water-heat utilization and high yield of oil sunflower[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 82-88.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}29

刘小刚, 孙光照, 彭有亮,等. 水肥耦合对芒果光合特性和产量及水肥利用的影响[J]. 农业工程学报, 2019, 35(16): 133-141.

LIU X G

,

SUN G Z

,

PENG Y L

, et al. Effect of water-fertilizer coupling on photosynthetic characteristics, fruit yield, water and fertilizer use of mango[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 133-141.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}30

庞永磊, 王凤新, 黄泽军, 等. 适宜施氮钾水平提高滴灌秋茶的产量及品质[J]. 农业工程学报, 2019, 35(24): 98-103.

PANG Y L

,

WANG F X

,

HUANG Z J

, et al. Improving yield and quality of drip irrigation under appropriate nitrogen and potassium fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 98-103.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}31

曹巍,刘宏权,陈任强,等. 膜下滴灌对玉米生长及土壤影响的研究进展[J].节水灌溉, 2023(4): 39-51.

CAO W, LIU H Q, CHEN R Q, et al, Research progress on effects of dip irrigation under mulch on maize and soil[J]. Water Saving Irrigation, 2023(4): 39-51.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}32

徐杰, 周培禄, 王璞, 等. 水肥管理对东北不同密度春玉米产量及水氮利用效率的影响[J]. 玉米科学, 2016, 24(1): 142-147.

XU J

,

ZHOU P L

,

WANG P

. Effects of water and fertiliser management on yield and water and nitrogen use efficiency of spring maize at different densities in Northeast China[J]. Journal of Maize Sciences,2016, 24(1): 142-147.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}33 FANISH S A

,

MUTHUKRISHNAN P

,

SANTHI P

. Effect of drip fertigation on field crops - a review[J]. Agricultural Reviews, 2011, 32(1): 14-25.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}34

邓兰生, 张承林. 滴灌施氮肥对盆栽玉米生长的影响[J]. 植物营养与肥料学报, 2007(1): 81-85.

DENG L S

,

ZHANG C L

. Effect of drip nitrogen fertigation on growth maize[J].Journal of Plant Nutrition and Fertilizers, 2007(1):81-85.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}35 HONGAL M M

,

NOOLI S S

. Nutrient movement in fertigation through drip - A review[J]. Agricultural Reviews, 2007, 28(4): 301-304.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}36

苑喜军, 聂大杭. 玉米水肥一体化施肥模式对肥料利用率的影响[J]. 作物研究, 2017, 31(4): 391-394.

YUAN X J

,

NIE D H

. The influence of water and fertilizer application model on fertiliser utilisation in maize[J]. Crop Research, 2017, 31(4): 391-394.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}37

王允喜, 李明思, 魏闯, 等. 毛管间距对膜下滴灌棉花根系及植株生长的影响[J]. 灌溉排水学报, 2010, 29(1): 68-73.

WANG Y X

,

LI M S

,

WEI C

, et al. Effect of drip-lines space on cotton root and plant growing under plastic mulched irrigation[J]. Journal of Irrigation and Drainage, 2010, 29(1): 68-73.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}38

窦超银, 孟维忠. 膜下滴灌在辽西半干旱区不同地形条件下的应用研究[J].节水灌溉, 2014(8): 19-21.

DOU C Y

,

MENG W Z

. Research on the application of mulch-drip irrigation under different landform condition in the semi-arid area of western Liaoning[J]. Water Saving Irrigation, 2014(8): 19-21.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}39

吕殿青, 王全九, 王文焰, 等. 膜下滴灌土壤盐分特性及影响因素的初步研究[J]. 灌溉排水学报, 2001(1): 28-31.

LV D Q

,

WANG Q J

,

WANG W Y

, et al. Salt distribution and effect factors in under film drip irrigation[J], Journal of Irrigation and Drainage, 2001(1): 28-31.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}40

谭军利, 康跃虎, 焦艳平, 等. 不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征[J]. 农业工程学报, 2008(6): 59-63.

TAN J L

,

KANG Y H

,

JIAO Y P

, et al. Characteristics of soil salinity distribution in saline soils under drip irrigation with different planting years[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008(6): 59-63.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}41

李毅杰, 原保忠, 别之龙, 等.不同土壤水分下限对大棚滴灌甜瓜产量和品质的影响[J].农业工程学报, 2012, 28(6): 132-138.

LI Y J

,

YUAN B Z

,

BI Z L

, et al. Effects of different lower soil moisture limits on the yield and quality of drip-irrigated melons in greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 132-138.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}42

王振华, 王克全, 葛宇, 等. 新疆滴灌春小麦需水规律初步研究[J]. 灌溉排水学报, 2010, 29(2): 61-64.

WANG Z H

,

WANG K Q

,

GE Y

, et al. Preliminary study on water demand pattern of spring wheat under drip irrigation in Xinjiang[J]. Journal of Irrigation and Drainage, 2010, 29(2): 61-64.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}43 ABUARAB M

,

MOSTAFA E

,

IBRAHIM M

. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil[J]. Journal of advanced research, 2013, 4(6): 493-499.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}44

张健利,王振华,陈潇杰,等.不同加气方式和灌水量对滴灌加工番茄耗水及生长的影响[J].西北农业学报, 2022, 31(11): 1 451-1 461.

ZHANG J L

,

WANG Z H

,

WANG X J

, et al. Effects of different aeration methods and irrigation amounts on water consumption and growth of processed tomato under drip irrigation[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(11): 1 451-1 461.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}45

孙昊,莫彦,李光永,等. 地下滴灌加气技术研究进展[J].灌溉排水学报, 2022, 41(10): 34-40.

SUN H

,

MO Y

,

LI G Y

, et al. Development in aerated subsurface drip irrigation: A Review[J]. Journal of Irrigation and Drainage, 2022, 41(10): 34-40.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}46 WANG J

,

GONG S

,

DI X

, et al. Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain[J]. Irrigation Science, 2013, 31(5):1 025-1 037.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}47 WANG F X

,

KANG Y

,

LIU S P

, et al. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain[J]. Agricultural Water Management 2006,79: 248-264.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}48 PAYERO J O

,

TARKALSON D D

,

IRMAK S

, et al. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate[J]. Agricultural Water Management, 2008, 95(8): 895-908.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}49

陶先萍, 罗宏海, 杨海, 等. 根域限制下水氮供应对膜下滴灌棉花根系及叶片衰老特性的影响[J]. 植物生态学报, 2013, 37(3): 256-267.

TAO X P

,

LUO H H

,

YANG H

, et al. Effects of water and nitrogen supply on root and leaf senescence of drip-irrigated cotton under root domain limitation[J]. Chinese Journal of Plant Ecology, 2013, 37(3): 256-267.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}50 SKINNER R H

,

HANSON J D

,

BENJAMIN J G

, et al. Nitrogen uptake and partitioning under alternate- and every-furrow irrigation[J]. Plant Soil, 1999, 210: 11-20.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}51 WILLIAM J D

. Modulation of root signals in relation to stomatal sensitivity to root-sourced abscisic acid in drought-affected plants[J]. Journal of Integrative Plant Biology, 2007, 10: 1 410-1 420.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}52

孙华银, 康绍忠, 胡笑涛, 等. 根系分区交替灌溉对温室甜椒不同灌水下限的响应[J]. 农业工程学报, 2008(6): 78-84.

SUN H Y

,

KANG S Z

,

HU X T

, et al. Response of root zoned alternating irrigation to different lower irrigation limits in greenhouse pepper[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008(6): 78-84.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}53 ANTOLIN MC

,

SANTESTEBAN H

,

MARIA ES

, et al. Involvement of abscisic acid and polyamines in berry ripening of Vitis vinifera (L.) subjected to water deficit irrigation[J]. Australian Journal of Grape and Wine Research, 2010, 14(2): 123-133.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}54

张计峰, 耿庆龙, 梁智, 等. 根区孔下滴灌施肥对新疆红枣产量品质和氮磷钾利用影响[J]. 农业工程学报, 2019, 35(12): 65-71.

ZHANG G F

,

GENG Q L

,

LIANG Z

, et al. Effects of root zone sub-hole drip irrigation fertilisation on yield quality and nitrogen, phosphorus and potassium utilisation of red dates in Xinjiang[J].Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 65-71.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}55

魏国良, 汪有科, 杨涛, 等. 滴灌条件下梨枣根系分布特征研究[J]. 安徽农业科学, 2010, 38(12): 6 136-6 139.

WEI G L

,

WANG Y K

,

YANG T

, et al. Characteristics of root distribution of pear jujube under drip irrigation[J]. Journal of Anhui Agricultural Sciences, 2010, 38(12): 6 136-6 139.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}56

康绍忠, 潘英华, 石培泽, 等. 控制性作物根系分区交替灌溉的理论与试验[J]. 水利学报, 2001(11): 80-86.

KANG S Z

,

PAN Y H

,

SHI P Z

, et al. Theory and experiment of controlled crop root zone alternate irrigation[J]. Journal of Hydraulic Engineering, 2001(11): 80-86.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}57

王冀川, 徐雅丽, 高山, 等. 滴灌小麦根系生理特性及其空间分布[J]. 西北农业学报, 2012, 21(5): 65-70.

WANG J C

,

XU Y L

,

GAO S

, et al. Physiological characteristics of drip-irrigated wheat roots and their spatial distribution[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 21(5): 65-70.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}58

张效星, 樊毅, 贾悦, 等. 水分亏缺对滴灌柑橘光合和产量及水分利用效率的影响[J]. 农业工程学报, 2018, 34(3): 143-150.

ZHANG X X

,

FAN Y

,

JIA Y

, et al. Effects of water deficit on photosynthesis and yield and water use efficiency of drip-irrigated citrus[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 143-150.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}59

李建明, 潘铜华, 王玲慧, 等. 水肥耦合对番茄光合、产量及水分利用效率的影响[J]. 农业工程学报, 2014, 30(10): 82-90.

LI J M

,

PAN T H

,

WANG L H

, et al. Effects of water-fertilizer coupling on photosynthesis, yield and water use efficiency of tomato[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 82-90.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}60

李维敏, 孙继颖, 高聚林,等. 不同覆膜滴灌方式对玉米叶片光合特性的影响[J]. 北方农业学报, 2014(4): 14-19.

LI W M

,

SUN J Y

,

GAO J L

, et al. Effects of different mulching drip irrigation methods on photosynthetic characteristics of maize leaves[J]. Journal of Northern Agriculture, 2014(4):14-19.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}61 CHALMERS D

,

WILSON I

. Productivity of peach trees: tree growth and water stress in relation to fruit growth and assimilate demand[J]. Annals of botany, 1978, 42: 285-294.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}62 HEBBAR S S

,

RAMACHANDRAPPA B K

,

NANJAPPA H V

, et al. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.)[J]. European journal of agronomy 2004, 21(1): 117-127.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}63

吕谋超, 冯俊杰, 翟国亮. 地下滴灌夏玉米的初步试验研究[J]. 农业工程学报, 2003, 19(1): 67-71.

LÜ M C

,

FENG J J

,

ZHAI G L

. Preliminary experimental study on subsurface drip irrigation of summer corn[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(1): 67-71.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}64

张建新,杨秀春,何江勇.滴灌棉花ABA不同氮肥处理下与土层20cm田间持水率之间的响应特征[J]. 干旱区地理, 2015, 38(5): 968-975.

ZHANG J X

,

YANG X C

,

HE J Y

. Response characteristics between different nitrogen fertilizer treatments of drip-irrigated cotton ABA and field water holding capacity at 20 cm soil layer[J]. Arid Land Geography, 2015, 38(5): 968-975.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}65

何华, 康绍忠, 曹红霞. 地下滴灌埋管深度对冬小麦根冠生长及水分利用效率的影响[J]. 农业工程学报, 2001(6): 31-33.

HE H

,

KANG S Z

,

CAO H X

. Effects of buried pipe depth of subsurface drip irrigation on root crown growth and water utilization efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2001(6): 31-33.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}66 WANG J

,

ZHANG Y

,

GONG S

, et al. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain[J]. Field Crops Research, 2018, 217: 218-228.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}67 LÜ Z

,

DIAO M

,

LI W

, et al. Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system[J]. Agricultural Water Management, 2019, 212: 252-261.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}68 YANG D

,

LI S

,

KANG S

, et al. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China[J]. Agricultural Water Management, 2020, 232: 106 001.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}69 SI Z

,

ZAIN M

,

MEHMOOD F

, et al. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain[J]. Agricultural Water Management, 2020, 231: 106 002.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}70 SHI X J

,

HAO X Z

,

LI N N

, et al. Organic liquid fertilizer coupled with single application of chemical fertilization improves growth, biomass, and yield components of cotton under mulch drip irrigation[J]. Front Plant Science, 2021, 12: 763 525.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}71 NIE J

,

WANG N

,

LI J

, et al. Prediction of liquid magnetization series data in agriculture based on enhanced CGAN[J]. Front Plant Science, 2022, 13: 929 140.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}72 WAN W

,

ZHAO Y

,

LI X

, et al. A moderate reduction in irrigation and nitrogen improves water-nitrogen use efficiency, productivity, and profit under new type of drip irrigated spring wheat system[J]. Front Plant Science, 2022, 13: 1 005 945.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}73 HAO K

,

FEI L

,

LIU L

, et al. Comprehensive evaluation on the yield, quality, and water-nitrogen use efficiency of mountain Apple under surge-root irrigation in the loess plateau based on the improved TOPSIS Method[J]. Front Plant Science, 2022, 13: 853 546.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}74 MUHAMMAD I

,

YANG L

,

AHMAD S

, et al. Irrigation and nitrogen fertilization alter soil bacterial communities, soil enzyme activities, and nutrient availability in maize crop[J]. Frontiers in Microbiology, 2022, 13: 833 758.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}75 ARANJUELO I

,

CABRERA-BOSQUET L

,

MORCUENDE R

, et al. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2 [J]. Journal of Experimental Botany, 2011, 62(11): 3 957-3 969.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}76 WAN W

,

ZHAO Y

,

LI X

, et al. A moderate reduction in irrigation and nitrogen improves water-nitrogen use efficiency, productivity, and profit under new type of drip irrigated spring wheat system[J]. Front Plant Science, 2022, 13: 1 005 945.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}77 GUO Y

,

WANG Q

,

ZHAO X

, et al. Field irrigation using magnetized brackish water affects the growth and water consumption of Haloxylon ammodendron seedlings in an arid area[J]. Front Plant Science, 2022, 13: 929 021.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}78 DONG Z

,

LIU Y

, CI B, et al. Estimation of nitrate nitrogen content in cotton petioles under drip irrigation based on wavelet neural network approach using spectral indices[J]. Plant Methods, 2021, 17(1): 90.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}79 YANG X

,

CHEN W

,

JIANG M

, et al. Dual effects of technology change: how does water technological progress affect China's water consumption [J]. Science, 2022, 25(7): 104 629.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}

相关知识

Water saving potential and mechanisms of subsurface drip irrigation: A review
春玉米不同生育期土壤湿润层深度调控的稳产节水效应
Research progress in the mechanism of rhizosphere micro
中国农业节水灌溉技术应用研究进展
膜下滴灌对不同土壤水分棉花花铃期光合生产、分配及籽棉产量的调节
Soil conditioner application status and application of risk research
Research and application progress in biological control technology for hygiene pest control
李志国
基于熵权
长江中下游崩岸险情智能感知预警与防治关键技术研究构想与成果展望

网址: Application Mechanism of Drip Irrigation Water Saving Technology and Hot Spot Research Progress https://m.huajiangbk.com/newsview524494.html

所属分类:花卉
上一篇: 蓝莓
下一篇: 一种防溢流雨水回用垂直滴灌系统及