摘要:
目的
以普洱茶、玫瑰花和葡萄籽为主要原料,研制出一种具有独特风味的复合饮料。
方法
通过单因素试验,确定普洱茶浸提液、玫瑰花冷萃液、葡萄籽浸提液、山楂浸提液、枸杞浸提液添加量对复合饮料感官品质的影响;在此基础上,设计响应面试验优化复合饮料配比,并进行感官评分及抗氧化活性评价。
结果
最佳配比为普洱茶浸提液添加量14.1%、玫瑰花冷萃液添加量3.2%、葡萄籽浸提液添加量4.9%、枸杞浸提液添加量3%、山楂浸提液添加量0.9%。在此配比下,复合饮料感官评分达85.6,DPPH自由基清除率为65.17±1.28%,ABTS自由基清除率为98.78±0.15%。
结论
采用本法研制的普洱茶玫瑰花葡萄籽复合饮料具有良好的风味和较好的抗氧化活性。
Abstract:
Objective
Using extracts of Pu-erh tea and several natural ingredients, a new compound beverage with exquisite sensory quality was developed.
Method
Through Single-factor test was conducted to determine the effects of the addition of Pu-erh tea extract, rose cold extract, grape seed extract, hawthorn extract and wolfberry extract on the sensory quality of the composite beverages. Then, the response surface test was designed to optimize the ratio of the composite beverage, and the sensory score and antioxidant activity were evaluated.
Result
The optimized beverage was made with extracts of Pu-erh tea at 14.1%, grape seed at 4.9%, hawthorn at 0.9%, wolfberry at 3%, and cold extract of rose at 3.2%. The newly developed beverage received a high sensory score of 85.6 with highly desirable antioxidant activities on scavenging DPPH radicals of 65.17±1.28% and on ABTS radicals of 98.78±0.15%.
Conclusion
The compound beverage of Pu-erh tea rose grape seed developed by this method has good flavor and good antioxidant activity.
图 1 普洱茶浸提液添加量对复合饮料感官评价的影响
注:图中不同字母表示差异显著性(P<0.05);图2-图5同。
Figure 1. Effect of Pu-erh tea extract on sensory quality of experimental beverage
Note: Data with different letters indicate significant difference at P<0.05. Same for Figs. 2-5.
图 2 玫瑰花冷萃液添加量对复合饮料感官评价的影响
Figure 2. Effect of rose cold extract on sensory quality of experimental beverage
图 3 葡萄籽浸提液添加量对复合饮料感官评价的影响
Figure 3. Effect of grape seed extract on sensory quality of experimental beverage
图 4 山楂浸提液添加量对复合饮料感官评价的影响
Figure 4. Effect of hawthorn extract on sensory quality of experimental beverage
图 5 枸杞浸提液添加量对复合饮料感官评价的影响
Figure 5. Effect of wolfberry extract on sensory quality of experimental beverage
图 6 普洱茶浸提液和玫瑰花冷萃液添加量对复合饮料感官评分影响的响应曲面及等高线
Figure 6. Response surface contour lines on sensory score of experimental beverage affected by Pu-erh tea extract and rose cold extract
图 7 普洱茶浸提液和葡萄籽浸提液添加量对复合饮料感官评分影响的响应曲面及等高线
Figure 7. Response surface contour lines on sensory score of experimental beverage affected by Pu-erh tea and grape seed extracts
图 8 普洱茶浸提液和山楂浸提液添加量对复合饮料感官评分影响的响应曲面及等高线
Figure 8. Response surface contour lines on sensory score of experimental beverage affected by Pu-erh tea and hawthorn extracts
图 9 玫瑰花冷萃液和葡萄籽浸提液添加量对复合饮料感官评分影响的响应曲面及等高线
Figure 9. Response surface contour lines on sensory score of experimental beverage affected by rose cold extract and grape seed extract
图 10 玫瑰花冷萃液和山楂浸提液添加量对复合饮料感官评分影响的响应曲面及等高线
Figure 10. Response surface contour lines on sensory score of experimental beverage affected by rose cold extract and hawthorn extract
图 11 葡萄籽浸提液和山楂浸提液添加量对复合饮料感官评分影响的响应曲面及等高线
Figure 11. Response surface contour lines on sensory score of experimental beverage affected by grape seed and hawthorn extracts
表 1 Box-Behnken试验设计因素与水平
Table 1 Factors and levels in Box-Benhnken experiment
水平 Level因素 FactorA(普洱茶浸提液%)表 2 普洱茶玫瑰花葡萄籽复合饮料感官评价标准
Table 2 Sensory evaluation of pu-erh tea rose grape seed compound beverage
指标 Index评分标准 Standard for evaluation评分 Score 色泽表 3 Box–Behnken设计及结果
Table 3 Design and results of Box-Behnken experiment
实验数表 4 回归模型方差分析结果
Table 4 Analysis of variance on regression model
变异来源表 5 普洱茶玫瑰花葡萄籽复合饮料理化指标及微生物指标测定结果
Table 5 Detection results of physical and chemical indexes and microbial indexes of Pu-erh tea rose grape seed compound beverage
检测指标 Detection index含量 Content国标限量值 National standard limited value 茶褐素 Theabrownin(mg·kg−1)1132.90±15.82—茶多酚 Tea polyphenol(mg·kg−1)327.75±7.10≥150咖啡因 Caffeine(mg·kg−1)204.15±1.72≥25没食子酸 Gallic acid(mg·kg−1)18.10±0.02—多糖 Polysaccharide(mg·kg−1)214.47±1.45—黄酮 Flavone(mg·kg−1)39.26±1.71—大肠菌群数 E. Coil count(CFU·mL−1)<0.031霉菌和酵母 Total yeast and mold count(CFU·mL−1)<520总菌落数 Total Viable Count(CFU·mL−1)<5100表 6 普洱茶玫瑰花葡萄籽复合饮料对2种自由基的清除率
Table 6 The scavenging rate of Pu-erh tea rose grape seed compound beverage against two kinds of oxygen radicals
样品WANG Z H, ZHENG C Q, MA C Q, et al. Comparative analysis of chemical constituents and antioxidant activity in tea-leaves microbial fermentation of seven tea-derived fungi from ripened Pu-erh tea[J]. LWT- Food Science and Technology, 2021, 142: 111006. doi: 10.1016/j.lwt.2021.111006
[2]MA W J, SHI Y L, YANG G Z, et al. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components[J]. Food Chemistry, 2022, 375: 131877. doi: 10.1016/j.foodchem.2021.131877
[3]DING Q Z, ZHENG W, ZHANG B W, et al. Comparison of hypoglycemic effects of ripened pu-erh tea and raw pu-erh tea in streptozotocin-induced diabetic rats[J]. Rsc Advances, 2019, 9 (6): 2967−2977. doi: 10.1039/C8RA09259A
[4]CAO Z H, YANG H, HE Z L, et al. Effects of aqueous extracts of raw pu-erh tea and ripened pu-erh tea on proliferation and differentiation of 3T3-L1 preadipocytes[J]. Phytotherapy Research, 2013, 27 (8): 1193−1199. doi: 10.1002/ptr.4831
[5]HU S S, CHEN Y, ZHAO S B, et al. Ripened Pu-Erh tea improved the enterohepatic circulation in a circadian rhythm disorder mice model[J]. Journal of Agricultural and Food Chemistry, 2021, 69 (45): 13533−13545. doi: 10.1021/acs.jafc.1c05338
[6]YE J, ZHAO Y, CHEN X M, et al. Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice[J]. Food Research International, 2021, 144 (5): 110360.
[7]HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communications, 2019, 10: 4971. doi: 10.1038/s41467-019-12896-x
[8]DENG X J, HOU Y, ZHOU H J, et al. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Science & Nutrition. 2021, 9: 1160-1170.
[9]HUANG Y N, QIU L, MI X, et al. Hot-water extract of ripened Pu-erh tea attenuates DSS-induced colitis through modulation of the NF-κB and HIF-1α signaling pathways in mice[J]. Food & Function, 2020, 11: 3459−3470.
[10]ZHOU B X, MA B S, MA C Q, et al. Classification of Pu-erh ripened teas and their differences in chemical constituents and antioxidant capacity[J]. LWT, 2022 (153): 112370.
[11]XIE J, YU H S, SONG S, et al. Pu-erh Tea Water Extract Mediates Cell Cycle Arrest and Apoptosis in MDA-MB-231 Human Breast Cancer Cells[J]. Frontiers in Pharmacology, 2017, 8: 190.
[12] 和丽媛,杨志龙,樊丹敏. 玫瑰功能成分及产品开发研究进展[J]. 食品工业科技,2021,42(14):408−413. [13] 陈真永,吴鹏,高小秦,等. 不同产地不同品种食用玫瑰抗氧化研究[J]. 西南农业学报,2020,33(10):2215−2219. [14]RENATA N, MARTA O, LUKASZ P, et al. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals[J]. Journal of the Science of Food and Agriculture, 2013, 94 (3): 560−567.
[15]LIU Y, LI H L, ZHENG Z C, et al. Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/mTOR pathway[J]. International Journal of Biological Macromolecules, 2022, 212: 257−274. doi: 10.1016/j.ijbiomac.2022.05.023
[16]WU M Q, FENG H F, SONG J X, et al. Structural elucidation and immunomodulatory activity of a neutral polysaccharide from the Kushui Rose (Rosa setate x Rosa rugosa) waste[J]. Carbohydrate Polymers, 2020, 232: 115804. doi: 10.1016/j.carbpol.2019.115804
[17] 宁忻,方伟,董海燕,等. 云南墨红玫瑰主要营养成分分析[J]. 现代食品,2021,27(18):225−228. [18] 孙来华. 葡萄籽功能成分及其应用[J]. 食品研究与开发,2011,32(7):184−188. [19] 张丽明,马雅鸽,张希,等. 葡萄籽相关产品的研究与开发现状[J]. 粮油食品科技,2020,28(3):105−111. [20]GUPTA M, DEY S, MARBANIANG D, et al. Grape seed extract: having a potential health benefits[J]. Journal of Food Science and Technology, 2020, 57 (4): 1205−1215. doi: 10.1007/s13197-019-04113-w
[21]MA Z F, ZHANG H X. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review[J]. Antioxidants, 2017, 6 (3): 71. doi: 10.3390/antiox6030071
[22]LIU M, YUN P, HU Y, et al. Effects of Grape Seed Proanthocyanidin Extract on Obesity[J]. Obesity Facts, 2020, 13 (2): 279−291. doi: 10.1159/000502235
[23] 刘学艳,何鲁南,吕才有. 普洱茶国内外研究进展及展望[J]. 中国茶叶,2020,42(9):1−7. [24] 张訸,刘云,罗旭璐,等. 云南不同产地食用玫瑰花多酚含量及抗氧化活性[J]. 贵州农业科学,2017,45(2):150−153. [25] 陈昆,杨云福,方卫山,等. 云南食用玫瑰花产业现状及发展研究[J]. 南方农机,2022,53(6):6−8. [26] 吴映梅. 葡萄籽的营养保健功能及开发利用[J]. 安徽农业科学,2017,45(8):105−106,120. [27]LIU Y, LUO L Y, LIAO C X, et al. Effects of brewing conditions on the phytochemical composition, sensory qualities and antioxidant activity of green tea infusion: A study using response surface methodology[J]. Food Chemistry, 2018, 269: 24−34. doi: 10.1016/j.foodchem.2018.06.130
[28] 李密转,李名立,陈宏燕,等. 贵州锌硒茶茶多糖的超声辅助提取工艺优化[J]. 贵州农业科学,2022,50(4):125−131. doi: 10.3969/j.issn.1001-3601.2022.04.016 [29] 何书美,刘敬兰. 茶叶中总黄酮含量测定方法的研究[J]. 分析化学,2007,35(9):1365−1368. doi: 10.3321/j.issn:0253-3820.2007.09.028 [30]CHENG Z H, MOORE J, YU L L. High-throughput relative DPPH radical scavenging capacity assay[J]. Journal of Agricultural and Food Chemistry, 2006, 54 (20): 7429−7436. doi: 10.1021/jf0611668
[31]THAIPONG K, BOONPRAKOB U, CROSBY K, et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts[J]. Journal of Food Composition and Analysis, 2006, 19 (6): 669−675.
[32] 张乔会,万海英,李亚杰,等. 响应面法优化发酵法提取贡水白柚皮可溶性膳食纤维工艺[J]. 中国食品添加剂,2021,32(12):104−111. [33] 孙宏莱,时得友,李丽丽,等. 响应面法优化软枣猕猴桃枝条总三萜提取工艺及其体外抗炎活性分析[J]. 食品工业科技,2021,42(15):189−197.相关知识
复合花卉饮料的研制.pdf
《柿子玫瑰花复合饮料的加工工艺研究》
葡萄籽提取物原花青素磷脂复合物抗氧化功能的实验研究
玫瑰鲜花抗氧化能力及其活性成份的分析
灰树花海棠果发酵饮料研制及其抗疲劳活性研究
花卉抗氧化筛选与玫瑰花抗氧化活性研究(可编辑)
南京中医药大学一种能提高抗氧化活性的栀子花复合提取物及其应用
花卉抗氧化筛选与玫瑰花抗氧化活性研究
(植物学专业优秀论文)玫瑰花多酚的分离纯化及其功能性饮料研究.pdf
火龙果花中黄酮类化合物抗氧化活性研究
网址: 普洱茶玫瑰花葡萄籽复合饮料的研制及其抗氧化活性评价 https://m.huajiangbk.com/newsview1058542.html
上一篇: 春天在家养几盆葡萄风信子,清雅又 |
下一篇: 葡萄的种类都有哪些,常见的种类有 |